initial commit

This commit is contained in:
Janis 2023-03-17 17:41:30 +01:00
commit b088e7ba55
3 changed files with 379 additions and 0 deletions

2
.gitignore vendored Normal file
View file

@ -0,0 +1,2 @@
/zig-cache/
/zig-out/

71
build.zig Normal file
View file

@ -0,0 +1,71 @@
const std = @import("std");
// Although this function looks imperative, note that its job is to
// declaratively construct a build graph that will be executed by an external
// runner.
pub fn build(b: *std.Build) void {
// Standard target options allows the person running `zig build` to choose
// what target to build for. Here we do not override the defaults, which
// means any target is allowed, and the default is native. Other options
// for restricting supported target set are available.
const target = b.standardTargetOptions(.{});
// Standard optimization options allow the person running `zig build` to select
// between Debug, ReleaseSafe, ReleaseFast, and ReleaseSmall. Here we do not
// set a preferred release mode, allowing the user to decide how to optimize.
const optimize = b.standardOptimizeOption(.{});
const exe = b.addExecutable(.{
.name = "datastructures",
// In this case the main source file is merely a path, however, in more
// complicated build scripts, this could be a generated file.
.root_source_file = .{ .path = "src/main.zig" },
.target = target,
.optimize = optimize,
});
exe.linkLibC();
// This declares intent for the executable to be installed into the
// standard location when the user invokes the "install" step (the default
// step when running `zig build`).
exe.install();
// This *creates* a RunStep in the build graph, to be executed when another
// step is evaluated that depends on it. The next line below will establish
// such a dependency.
const run_cmd = exe.run();
// By making the run step depend on the install step, it will be run from the
// installation directory rather than directly from within the cache directory.
// This is not necessary, however, if the application depends on other installed
// files, this ensures they will be present and in the expected location.
run_cmd.step.dependOn(b.getInstallStep());
// This allows the user to pass arguments to the application in the build
// command itself, like this: `zig build run -- arg1 arg2 etc`
if (b.args) |args| {
run_cmd.addArgs(args);
}
// This creates a build step. It will be visible in the `zig build --help` menu,
// and can be selected like this: `zig build run`
// This will evaluate the `run` step rather than the default, which is "install".
const run_step = b.step("run", "Run the app");
run_step.dependOn(&run_cmd.step);
// Creates a step for unit testing.
const exe_tests = b.addTest(.{
.root_source_file = .{ .path = "src/main.zig" },
.target = target,
.optimize = optimize,
});
exe_tests.linkLibC();
// Similar to creating the run step earlier, this exposes a `test` step to
// the `zig build --help` menu, providing a way for the user to request
// running the unit tests.
const test_step = b.step("test", "Run unit tests");
test_step.dependOn(&exe_tests.step);
}

306
src/main.zig Normal file
View file

@ -0,0 +1,306 @@
const std = @import("std");
const BTree = struct {
const Self = @This();
const B: usize = 3;
const CAPACITY: usize = 2 * B - 1;
const NUM_EDGES: usize = 2 * B;
ally: std.mem.Allocator = std.heap.c_allocator,
root: ?NodeOrLeaf,
fn create(ally: std.mem.Allocator) Self {
return Self{
.ally = ally,
.root = null,
};
}
fn insert(self: *Self, value: u32) !void {
if (self.root) |*root| {
switch (root.*) {
.internal => |node| {
std.debug.print("can't insert values into {?} yet :|\n", .{node});
},
.leaf => |leaf| {
try leaf.insert_value(value);
},
}
} else {
var leaf: *Leaf = try self.ally.create(Leaf);
errdefer self.ally.destroy(leaf);
leaf.init(self.ally);
try leaf.insert_value(value);
self.root = NodeOrLeaf{ .leaf = leaf };
}
}
fn destroy(self: *Self) void {
if (self.root) |*root| {
root.destroy();
}
}
const NodeOrLeafTag = enum {
internal,
leaf,
};
const NodeOrLeaf = union(NodeOrLeafTag) {
internal: *Node,
leaf: *Leaf,
fn destroy(self: *NodeOrLeaf) void {
self.as_leaf().destroy();
}
fn as_leaf(self: *NodeOrLeaf) *Leaf {
switch (self.*) {
.internal => |node| {
return node.as_leaf();
},
.leaf => |leaf| {
return leaf;
},
}
}
fn from_leaf(leaf: *Leaf) NodeOrLeaf {
if (leaf.level == 0) {
return .{ .leaf = leaf };
} else {
return .{ .node = @ptrCast(Node, leaf) };
}
}
};
const Node = struct {
leaf: Leaf,
edges: [NUM_EDGES]?NodeOrLeaf = undefined,
fn create(ally: std.mem.Allocator) !Leaf {
var node = try ally.create(Node);
node.init(ally);
return node;
}
fn init(self: *Leaf, ally: std.mem.Allocator) void {
self.* = Node{ .leaf = Leaf{ .ally = ally } };
}
fn as_leaf(self: *Node) *Leaf {
return &self.leaf;
}
fn insert_node(self: *Node, child: NodeOrLeaf) void {
const self_leaf = self.as_leaf();
const ls = child.as_leaf().get_values()[0];
var idx: u16 = 0;
for (self_leaf.get_values(), 0..) |v, i| {
idx = @intCast(u16, i);
if (v > ls) {
break;
}
}
if (self.get_edges()[idx]) |edge| {
std.debug.print("edge already present?: {?}", .{edge});
} else {
child.as_leaf().parent = .{ .parent = self, .idx = idx };
self.get_edges()[idx] = child;
}
}
fn get_edges(self: *Node) []?NodeOrLeaf {
const len = self.leaf.len;
return self.edges[0..len];
}
};
const ParentPtr = struct {
parent: *Node,
idx: u16,
};
const Leaf = struct {
ally: std.mem.Allocator,
level: usize = 0,
parent: ?ParentPtr = null,
len: u16 = 0,
values: [CAPACITY]u32 = undefined,
fn create(ally: std.mem.Allocator) !*Leaf {
var leaf = try ally.create(Leaf);
leaf.init(ally);
return leaf;
}
fn init(self: *Leaf, ally: std.mem.Allocator) void {
self.* = Leaf{ .ally = ally };
}
fn destroy(self: *Leaf) void {
self.ally.destroy(self);
}
fn push_value(self: *Leaf, value: u32) void {
std.debug.assert(self.len < CAPACITY);
var tmp = value;
for (self.get_values()) |*val| {
if (val.* < value) {
continue;
}
const t = val.*;
val.* = tmp;
tmp = t;
}
self.values[self.len] = tmp;
self.len = self.len + 1;
}
const SplitResult = struct {
// attached
left: *Leaf,
// lose value, previously attacked, must be inserted
middle: u32,
// free floating leaf, must be attached
right: *Leaf,
};
fn split_at(self: *Leaf, value: u32) !SplitResult {
var idx: u16 = 0;
for (self.get_values(), 0..) |v, i| {
idx = @intCast(u16, i);
if (v > value) {
break;
}
}
std.debug.assert(idx > 0 and idx < CAPACITY - 1);
var new = try Leaf.create(self.ally);
new.level = self.level;
var middle: u32 = undefined;
// take from right half
if (idx > B) {
new.len = self.len - (idx + 1);
std.mem.copy(u32, &new.values, self.values[(idx + 1)..self.len]);
middle = self.values[idx];
self.len = idx;
self.push_value(value);
} else {
// take from left half
new.len = self.len - (idx);
std.mem.copy(u32, &new.values, self.values[idx..self.len]);
new.push_value(value);
middle = self.values[idx - 1];
self.len = idx - 1;
}
return .{ .left = self, .middle = middle, .right = new };
}
fn insert_value(self: *Leaf, value: u32) !void {
if (self.len < CAPACITY) {
self.push_value(value);
} else {
return error.LeafAtCapacity;
}
}
fn get_values(self: *Leaf) []u32 {
const len = self.len;
return self.values[0..len];
}
};
};
pub fn main() !void {
// Prints to stderr (it's a shortcut based on `std.io.getStdErr()`)
std.debug.print("All your {s} are belong to us.\n", .{"codebase"});
// stdout is for the actual output of your application, for example if you
// are implementing gzip, then only the compressed bytes should be sent to
// stdout, not any debugging messages.
const stdout_file = std.io.getStdOut().writer();
var bw = std.io.bufferedWriter(stdout_file);
const stdout = bw.writer();
try stdout.print("Run `zig build test` to run the tests.\n", .{});
try bw.flush(); // don't forget to flush!
}
test "btree leaf" {
std.testing.refAllDeclsRecursive(BTree);
std.testing.refAllDeclsRecursive(BTree.Leaf);
var leaf = BTree.Leaf{ .ally = std.testing.allocator, .parent = null, .len = 2, .values = [_]u32{ 5, 6, undefined, undefined, undefined } };
const values = leaf.get_values();
std.debug.print("{?}\n", .{leaf});
std.debug.print("{any}\n", .{values});
}
fn printValues(leaf: *BTree.Leaf) void {
const values = leaf.get_values();
std.debug.print("{any}\n", .{values});
}
test "leaf split" {
std.debug.print("testing splitting\n", .{});
var tree = BTree.create(std.testing.allocator);
defer tree.destroy();
try tree.insert(2);
try tree.insert(4);
try tree.insert(6);
try tree.insert(3);
try tree.insert(7);
std.debug.print("before split:", .{});
printValues(tree.root.?.as_leaf());
const split = try tree.root.?.as_leaf().split_at(5);
std.debug.print("after split:", .{});
printValues(tree.root.?.as_leaf());
std.debug.print("split: {?}\n", .{split});
tree.ally.destroy(split.right);
}
test "btree new" {
std.debug.print("testing insertion\n", .{});
var tree = BTree.create(std.testing.allocator);
defer tree.destroy();
try tree.insert(5);
printValues(tree.root.?.as_leaf());
try tree.insert(4);
printValues(tree.root.?.as_leaf());
try tree.insert(6);
printValues(tree.root.?.as_leaf());
try tree.insert(3);
printValues(tree.root.?.as_leaf());
try tree.insert(7);
printValues(tree.root.?.as_leaf());
//try tree.insert(8);
}
test "simple test" {
var list = std.ArrayList(i32).init(std.testing.allocator);
defer list.deinit(); // try commenting this out and see if zig detects the memory leak!
try list.append(42);
try std.testing.expectEqual(@as(i32, 42), list.pop());
}