i genuinely believe this is close to working

This commit is contained in:
Janis 2025-01-09 18:12:47 +01:00
parent 107c43ee77
commit 3332e59453
4 changed files with 932 additions and 672 deletions

View file

@ -26,6 +26,17 @@ pub struct BufferDesc {
pub alloc_flags: vk_mem::AllocationCreateFlags,
}
impl std::hash::Hash for BufferDesc {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
self.flags.hash(state);
self.size.hash(state);
self.usage.hash(state);
self.queue_families.hash(state);
self.mem_usage.hash(state);
self.alloc_flags.bits().hash(state);
}
}
impl std::fmt::Debug for BufferDesc {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("BufferDesc")
@ -49,6 +60,20 @@ impl std::fmt::Debug for BufferDesc {
}
}
impl Eq for BufferDesc {}
impl PartialEq for BufferDesc {
fn eq(&self, other: &Self) -> bool {
self.flags == other.flags
// for hashmaps, `Eq` may be more strict than `Hash`
&& self.name == other.name
&& self.size == other.size
&& self.usage == other.usage
&& self.queue_families == other.queue_families
&& self.mem_usage == other.mem_usage
&& self.alloc_flags.bits() == other.alloc_flags.bits()
}
}
impl Default for BufferDesc {
fn default() -> Self {
Self {

View file

@ -37,7 +37,6 @@ pub struct ImageDesc {
impl std::hash::Hash for ImageDesc {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
self.flags.hash(state);
self.name.hash(state);
self.format.hash(state);
self.kind.hash(state);
self.mip_levels.hash(state);

View file

@ -22,7 +22,15 @@ use petgraph::{
visit::{EdgeRef, IntoNodeReferences, NodeRef},
};
def_monotonic_id!(pub GraphResourceId);
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
#[repr(transparent)]
pub struct GraphResourceId(pub(crate) u32);
impl Display for GraphResourceId {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "#{}", self.0)
}
}
#[derive(Debug, Clone)]
pub enum GraphResourceDesc {
@ -30,13 +38,50 @@ pub enum GraphResourceDesc {
Buffer(BufferDesc),
}
#[derive(Debug, PartialEq, Eq)]
impl From<GraphResourceDesc> for GraphResource {
fn from(value: GraphResourceDesc) -> Self {
match value {
GraphResourceDesc::Image(image_desc) => Self::ImageDesc(image_desc),
GraphResourceDesc::Buffer(buffer_desc) => Self::BufferDesc(buffer_desc),
}
}
}
#[derive(Default, Debug, PartialEq, Eq)]
pub enum GraphResource {
Framebuffer(Arc<SwapchainFrame>),
ImportedImage(Arc<Image>),
ImportedBuffer(Arc<Buffer>),
Image(Arc<Image>),
Buffer(Buffer),
ImageDesc(ImageDesc),
BufferDesc(BufferDesc),
#[default]
Default,
}
impl GraphResource {
fn simple_hash(&self) -> u64 {
use std::hash::{Hash, Hasher};
let mut state = std::hash::DefaultHasher::new();
let discr = core::mem::discriminant(self);
discr.hash(&mut state);
match self {
GraphResource::Framebuffer(swapchain_frame) => {
(swapchain_frame.index, swapchain_frame.image.handle()).hash(&mut state)
}
GraphResource::ImportedImage(image) => image.handle().hash(&mut state),
GraphResource::ImportedBuffer(buffer) => buffer.handle().hash(&mut state),
GraphResource::Image(image) => image.handle().hash(&mut state),
GraphResource::Buffer(buffer) => buffer.handle().hash(&mut state),
GraphResource::ImageDesc(image_desc) => image_desc.hash(&mut state),
GraphResource::BufferDesc(buffer_desc) => buffer_desc.hash(&mut state),
GraphResource::Default => {}
}
state.finish()
}
}
#[derive(Debug, Clone, Copy)]
@ -55,12 +100,12 @@ pub enum StoreOp {
pub struct RenderContext<'a> {
pub device: device::Device,
pub cmd: commands::SingleUseCommand,
pub resources: &'a BTreeMap<GraphResourceId, GraphResource>,
pub resources: &'a [GraphResource],
}
impl RenderContext<'_> {
pub fn get_image(&self, id: GraphResourceId) -> Option<&Arc<Image>> {
self.resources.get(&id).and_then(|res| match res {
self.resources.get(id.0 as usize).and_then(|res| match res {
GraphResource::ImportedImage(arc) => Some(arc),
GraphResource::Image(image) => Some(image),
GraphResource::Framebuffer(fb) => Some(&fb.image),
@ -68,7 +113,7 @@ impl RenderContext<'_> {
})
}
pub fn get_buffer(&self, id: GraphResourceId) -> Option<&Buffer> {
self.resources.get(&id).and_then(|res| match res {
self.resources.get(id.0 as usize).and_then(|res| match res {
GraphResource::ImportedBuffer(arc) => Some(arc.as_ref()),
GraphResource::Buffer(buffer) => Some(buffer),
_ => None,
@ -102,13 +147,13 @@ pub struct AccessMask {
pub mask: vk::AccessFlags2,
}
impl AccessMask {
fn undefined() -> Self {
pub fn empty() -> Self {
Self {
stage: vk::PipelineStageFlags2::NONE,
mask: vk::AccessFlags2::empty(),
}
}
fn is_empty(&self) -> bool {
pub fn is_empty(&self) -> bool {
self.stage.is_empty() && self.mask.is_empty()
}
}
@ -305,9 +350,8 @@ def_monotonic_id!(pub RenderGraphPassId);
// to find resource_descs which are eq, but whose liveness doesn't overlap.
#[derive(Debug)]
pub struct RenderGraph {
resource_descs: BTreeMap<GraphResourceId, GraphResourceDesc>,
resources: BTreeMap<GraphResourceId, GraphResource>,
accesses: BTreeMap<GraphResourceId, Access>,
resources: Vec<GraphResource>,
accesses: Vec<Access>,
pass_descs: Vec<PassDesc>,
/// the rendergraph produces these resources. Any passes on which these
/// outputs do not depend are pruned.
@ -317,18 +361,21 @@ pub struct RenderGraph {
impl RenderGraph {
pub fn new() -> Self {
Self {
resource_descs: BTreeMap::new(),
resources: BTreeMap::new(),
resources: Vec::new(),
pass_descs: Vec::new(),
accesses: BTreeMap::new(),
accesses: Vec::new(),
outputs: Vec::new(),
}
}
fn get_next_resource_id(&mut self) -> GraphResourceId {
GraphResourceId(self.resources.len() as u32)
}
pub fn add_resource(&mut self, desc: GraphResourceDesc) -> GraphResourceId {
let id = GraphResourceId::new();
self.resource_descs.insert(id, desc);
self.accesses.insert(id, Access::undefined());
let id = self.get_next_resource_id();
self.resources.push(desc.into());
self.accesses.push(Access::undefined());
id
}
pub fn mark_as_output(&mut self, id: GraphResourceId) {
@ -336,16 +383,16 @@ impl RenderGraph {
self.outputs.push(id);
}
pub fn import_resource(&mut self, res: GraphResource, access: Access) -> GraphResourceId {
if let Some((&id, _)) = self
if let Some(i) = self
.resources
.iter()
.find(|(_, resident)| &&res == resident)
.position(|other| res.simple_hash() == other.simple_hash())
{
id
GraphResourceId(i as u32)
} else {
let id = GraphResourceId::new();
self.resources.insert(id, res);
self.accesses.insert(id, access);
let id = self.get_next_resource_id();
self.resources.push(res);
self.accesses.push(access);
id
}
}
@ -358,10 +405,7 @@ impl RenderGraph {
self.import_resource(res, access)
}
pub fn import_framebuffer(&mut self, frame: Arc<SwapchainFrame>) -> GraphResourceId {
let id = GraphResourceId::new();
self.resources.insert(id, GraphResource::Framebuffer(frame));
self.mark_as_output(id);
id
self.import_resource(GraphResource::Framebuffer(frame), Access::undefined())
}
pub fn add_pass(&mut self, pass: PassDesc) {
self.pass_descs.push(pass);
@ -374,670 +418,63 @@ impl RenderGraph {
&mut self,
device: device::Device,
) -> crate::Result<WithLifetime<'_, commands::CommandList<commands::SingleUseCommand>>> {
// create internal resources:
for (&id, desc) in self.resource_descs.iter() {
tracing::trace!("creating resource {id:?} with {desc:?}");
match desc.clone() {
GraphResourceDesc::Image(image_desc) => {
self.resources.insert(
id,
GraphResource::Image(Arc::new(Image::new(device.clone(), image_desc)?)),
);
}
GraphResourceDesc::Buffer(buffer_desc) => {
self.resources.insert(
id,
GraphResource::Buffer(Buffer::new(device.clone(), buffer_desc)?),
);
}
}
}
let now = std::time::Instant::now();
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
enum PassNode {
First,
Pass(usize),
Last,
}
let mut refmap = util::asdf::NodeRefsMap::new(self.resources.len(), self.pass_descs.len());
impl PassNode {
fn into_node_idx(&self) -> u32 {
match self {
PassNode::First => 0,
PassNode::Last => 1,
PassNode::Pass(i) => 2 + *i as u32,
}
}
fn into_u32(&self, max_i: u32) -> u32 {
match self {
PassNode::First => 0,
PassNode::Last => max_i + 1,
PassNode::Pass(i) => 1 + *i as u32,
}
}
fn range_full(from: Self, to: Self, max_i: u32) -> std::ops::RangeInclusive<u32> {
from.into_u32(max_i)..=to.into_u32(max_i)
}
fn from_u32(v: u32, max_i: u32) -> Self {
match v {
0 => Self::First,
n if n == 1 + max_i => Self::Last,
n => Self::Pass(n as usize - 1),
}
}
}
refmap.allocate_ref_ranges(&self.pass_descs);
refmap.ref_passes(&self.pass_descs);
refmap.ref_inputs(&self.resources);
refmap.ref_outputs(&self.outputs);
let dag = refmap.build_dag();
let topo = refmap.toposort_dag(dag);
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
enum RefAccess {
__Min,
None,
Read(Access),
Write(Access),
__Max,
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
struct GraphRef {
pass: PassNode,
resource: GraphResourceId,
access: RefAccess,
}
// gather references to resources.
let (references, intervals) = util::timed("build reference and interval trees", || {
let mut references = BTreeSet::<GraphRef>::new();
// interval for each resource from (first pass referencing, last pass referencing)
let mut intervals = BTreeMap::<GraphResourceId, (PassNode, PassNode)>::new();
// the root node creates and transitions resources added to the
// graph. don't want to create any resources which are never used
// after `First`. a newly created resource has no layout and no
// writes to make-available.
for rid in self.resource_descs.keys() {
references.insert(GraphRef {
pass: PassNode::First,
resource: *rid,
access: RefAccess::Write(Access::undefined()),
});
}
for rid in self.resources.keys() {
references.insert(GraphRef {
pass: PassNode::First,
resource: *rid,
access: RefAccess::Write(
self.accesses
.get(rid)
.cloned()
.unwrap_or(Access::undefined()),
),
});
intervals.insert(*rid, (PassNode::First, PassNode::First));
}
for (i, pass) in self.pass_descs.iter().enumerate() {
let mut reads = BTreeMap::new();
for (rid, access) in &pass.reads {
reads
.entry(*rid)
.and_modify(|entry| {
*entry = *entry | *access;
})
.or_insert(*access);
intervals
.entry(*rid)
.and_modify(|entry| {
entry.1 = PassNode::Pass(i);
})
.or_insert((PassNode::Pass(i), PassNode::Pass(i)));
}
references.extend(reads.into_iter().map(|(resource, access)| GraphRef {
pass: PassNode::Pass(i),
resource,
access: RefAccess::Read(access),
}));
let mut writes = BTreeMap::new();
for (rid, access) in &pass.writes {
writes
.entry(*rid)
.and_modify(|entry| {
*entry = *entry | *access;
})
.or_insert(*access);
intervals
.entry(*rid)
.and_modify(|entry| {
entry.1 = PassNode::Pass(i);
})
.or_insert((PassNode::Pass(i), PassNode::Pass(i)));
}
references.extend(writes.into_iter().map(|(resource, access)| GraphRef {
pass: PassNode::Pass(i),
resource,
access: RefAccess::Write(access),
}));
}
// any resource marked as output should be created and returned even
// if it isn't referenced by any pass.
for rid in &self.outputs {
references.insert(GraphRef {
pass: PassNode::Last,
resource: *rid,
access: RefAccess::None,
});
intervals
.entry(*rid)
.and_modify(|entry| {
entry.1 = PassNode::Last;
})
.or_insert((PassNode::Last, PassNode::Last));
}
(references, intervals)
});
#[derive(Debug, Clone, Copy)]
enum Barrier {
Logical,
Execution {
src: vk::PipelineStageFlags2,
dst: vk::PipelineStageFlags2,
},
LayoutTransition {
src: (vk::PipelineStageFlags2, vk::ImageLayout),
dst: (vk::PipelineStageFlags2, vk::ImageLayout),
},
MakeAvailable {
src: (vk::PipelineStageFlags2, vk::AccessFlags2),
dst: vk::PipelineStageFlags2,
},
MakeVisible {
src: vk::PipelineStageFlags2,
dst: (vk::PipelineStageFlags2, vk::AccessFlags2),
},
MemoryBarrier {
src: (vk::PipelineStageFlags2, vk::AccessFlags2),
dst: (vk::PipelineStageFlags2, vk::AccessFlags2),
},
}
impl Display for Barrier {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Barrier::Logical => write!(f, "Logical"),
Barrier::Execution { .. } => write!(f, "Execution"),
Barrier::LayoutTransition { .. } => write!(f, "Layout"),
Barrier::MakeAvailable { .. } => write!(f, "MakeAvailable"),
Barrier::MakeVisible { .. } => write!(f, "MakeVisible"),
Barrier::MemoryBarrier { .. } => write!(f, "MemoryBarrier"),
}
}
}
let pass_count = self.pass_descs.len() as u32;
// build graph from references.
let mut dag = util::timed("construct dag", || {
let mut edges = Vec::new();
intervals.iter().for_each(|(&rid, &(from, to))| {
#[derive(Clone, Copy, Debug)]
enum PreviousRef {
Write(PassNode, Access),
Read(PassNode, Access),
}
impl PreviousRef {
fn node(&self) -> PassNode {
match self {
PreviousRef::Write(pass_node, _) => *pass_node,
PreviousRef::Read(pass_node, _) => *pass_node,
}
}
fn access(&self) -> Access {
match self {
PreviousRef::Write(_, access) => *access,
PreviousRef::Read(_, access) => *access,
}
}
}
// writes not yet made available
let mut to_make_available = AccessMask::undefined();
// writes already made-visible
let mut made_visible = AccessMask::undefined();
let mut last_read = Option::<PreviousRef>::None;
let mut last_write = Option::<PreviousRef>::None;
let mut last_ref = Option::<PreviousRef>::None;
// pass, read, write
let mut current_pass = (from, Access::empty(), Access::empty());
for pass in PassNode::range_full(from, to, pass_count)
.map(|i| PassNode::from_u32(i, pass_count))
{
let mut range = references.range(
GraphRef {
pass,
resource: rid,
access: RefAccess::__Min,
}..GraphRef {
pass,
resource: rid,
access: RefAccess::__Max,
},
);
while let Some(a) = range.next() {
if a.pass != current_pass.0 {
if current_pass.1 != Access::empty() {
last_read = Some(PreviousRef::Read(current_pass.0, current_pass.1));
last_ref = Some(PreviousRef::Read(current_pass.0, current_pass.1));
}
if current_pass.2 != Access::empty() {
last_write =
Some(PreviousRef::Write(current_pass.0, current_pass.2));
last_ref = Some(PreviousRef::Write(current_pass.0, current_pass.2));
}
current_pass = (a.pass, Access::empty(), Access::empty());
}
// TODO: VkEvents can make this more
// fine-grained but also probably have zero
// real-world benefit :<
match a.access {
RefAccess::None => {
// make-available previous writes
// no-op edge between previous reference and a.pass
if let Some(last_ref) = last_ref.as_ref() {
edges
.push(((last_ref.node(), a.pass), (rid, Barrier::Logical)));
}
// because this is the last node, setting last_ref isn't required.
}
RefAccess::Read(access) => {
// - if read: no writes pending, check for
// layout transition, otherwise an edge to
// previous write. make sure it is only executed
// once.
// - if write: make-available writes + make-visible for reads
let make_visible_mask = access.into_access_mask() & !made_visible;
made_visible = made_visible | make_visible_mask;
match last_ref {
None => {}
Some(PreviousRef::Read(pass_node, before)) => {
if let Some(last_write) = last_write.as_ref() {
if !make_visible_mask.is_empty() {
// make-visible reads.
edges.push((
(last_write.node(), a.pass),
(
rid,
Barrier::MakeVisible {
src: last_write.access().stage,
dst: (
make_visible_mask.stage,
make_visible_mask.mask,
),
},
),
));
} else {
// still require a after b
edges.push((
(last_write.node(), a.pass),
(
rid,
Barrier::Execution {
src: last_write.access().stage,
dst: access.stage,
},
),
));
}
}
if before.layout != access.layout {
edges.push((
(pass_node, a.pass),
(
rid,
Barrier::LayoutTransition {
src: (before.stage, before.layout.unwrap()),
dst: (access.stage, access.layout.unwrap()),
},
),
));
}
}
Some(PreviousRef::Write(write, before)) => {
// make writes visible
if !make_visible_mask.is_empty() {
edges.push((
(write, a.pass),
(
rid,
Barrier::MakeVisible {
src: before.stage,
dst: (
make_visible_mask.stage,
make_visible_mask.mask,
),
},
),
));
}
// make all writes available
if !to_make_available.is_empty() {
edges.push((
(write, a.pass),
(
rid,
Barrier::MakeAvailable {
src: (
to_make_available.stage,
to_make_available.mask,
),
dst: access.stage,
},
),
));
// mark that we've made all pending writes available
to_make_available = AccessMask::undefined();
}
if make_visible_mask.is_empty()
&& to_make_available.is_empty()
{
// still require a after b
edges.push((
(write, a.pass),
(
rid,
Barrier::Execution {
src: before.stage,
dst: access.stage,
},
),
));
}
}
}
current_pass.1 = current_pass.1 | access;
}
RefAccess::Write(access) => {
// - if read: execution barrier against write-after-read
// - if write: check for layout transition, otherwise a no-op edge.
to_make_available = to_make_available | access.into_access_mask();
match last_ref {
None => {}
Some(PreviousRef::Read(pass_node, before)) => {
// execution barrier to ward against write-after-read
edges.push((
(pass_node, a.pass),
(
rid,
Barrier::Execution {
src: before.stage,
dst: access.stage,
},
),
));
}
Some(PreviousRef::Write(pass_node, before)) => {
if before.layout != access.layout {
// as far as I understand the spec,
// this already makes-available
edges.push((
(pass_node, a.pass),
(
rid,
Barrier::LayoutTransition {
src: (before.stage, before.layout.unwrap()),
dst: (access.stage, access.layout.unwrap()),
},
),
));
}
// write_no_sync: pass tells us that
// writes do not interleave.
if let Some(last_read) = last_read.as_ref() {
edges.push((
(last_read.node(), a.pass),
(rid, Barrier::Logical),
));
}
}
}
current_pass.2 = current_pass.2 | access;
}
_ => unreachable!(),
};
}
}
});
let mut dag = petgraph::stable_graph::StableDiGraph::new();
dag.add_node(PassNode::First);
dag.add_node(PassNode::Last);
for i in 0..self.pass_descs.len() {
dag.add_node(PassNode::Pass(i));
}
for ((from, to), weight) in edges {
dag.add_edge(
from.into_node_idx().into(),
to.into_node_idx().into(),
weight,
);
}
loop {
let sinks = dag
.externals(petgraph::Direction::Outgoing)
.filter(|idx| dag.node_weight(*idx) != Some(&PassNode::Last))
.collect::<Vec<_>>();
if sinks.is_empty() {
break;
}
for sink in sinks {
dag.remove_node(sink);
}
}
// #[cfg(any(debug_assertions, test))]
// std::fs::write(
// "render_graph2.dot",
// &format!(
// "{:?}",
// petgraph::dot::Dot::with_attr_getters(
// &dag,
// &[],
// &|_graph, edgeref| {
// format!(
// "label = \"{},{:#?}\"",
// edgeref.weight().0.as_u32(),
// edgeref.weight().1,
// )
// },
// &|_graph, noderef| { format!("label = \"Pass({:?})\"", noderef.weight()) }
// )
// ),
// )
// .expect("writing render_graph repr");
dag
});
// TODO: rewrite finding edges properly.
// finding out if this graph is cyclical is actually non-trivial
// some pass might require both a read of a resource 1, and a read of a resource 2, where 2 is the product of another pass writing to resource 1.
// this could be resolved by copying resource 1 before the write pass.
// tl;dr: write-after-read makes this all more complicated
let mut topological_map = Vec::new();
// create topological map of DAG from sink to source
loop {
let (sinks, passes): (Vec<_>, Vec<_>) = dag
.externals(petgraph::Direction::Outgoing)
//.filter(|&id| id != root)
.filter_map(|id| dag.node_weight(id).cloned().map(|idx| (id, idx)))
.unzip();
if sinks.is_empty() {
break;
}
let mut barriers = BTreeMap::new();
for &sink in &sinks {
dag.edges_directed(sink, petgraph::Direction::Incoming)
.for_each(|edge| {
let (rid, barrier) = edge.weight();
let before_and_after = match *barrier {
Barrier::Logical => None,
Barrier::Execution { src, dst } => Some((
Access {
stage: src,
..Access::empty()
},
Access {
stage: dst,
..Access::empty()
},
)),
Barrier::LayoutTransition {
src: (src, from),
dst: (dst, to),
} => Some((
Access {
stage: src,
layout: Some(from),
..Access::empty()
},
Access {
stage: dst,
layout: Some(to),
..Access::empty()
},
)),
Barrier::MakeAvailable {
src: (stage, mask),
dst,
} => Some((
Access {
stage,
mask,
..Access::empty()
},
Access {
stage: dst,
..Access::empty()
},
)),
Barrier::MakeVisible {
src,
dst: (stage, mask),
} => Some((
Access {
stage: src,
..Access::empty()
},
Access {
stage,
mask,
..Access::empty()
},
)),
Barrier::MemoryBarrier {
src: (src_stage, src_mask),
dst: (dst_stage, dst_mask),
} => Some((
Access {
stage: src_stage,
mask: src_mask,
..Access::empty()
},
Access {
stage: dst_stage,
mask: dst_mask,
..Access::empty()
},
)),
};
if let Some((before, after)) = before_and_after {
// initial access is transitioned at the beginning
// this affects imported resources only.
barriers
.entry(*rid)
.and_modify(|(from, to)| {
*from = *from | before;
*to = *to | after;
})
.or_insert((before, after));
}
});
dag.remove_node(sink);
}
let passes = passes
.into_iter()
.filter_map(|pass| {
if let PassNode::Pass(i) = pass {
Some(i)
} else {
None
}
})
.map(|i| core::mem::take(&mut self.pass_descs[i]))
.collect::<Vec<_>>();
topological_map.push((passes, barriers));
}
//tracing::debug!("mapping: {topological_map:#?}");
// I don't think this can currently happen with the way passes are added.
dag.remove_node(0.into());
if dag.node_count() > 0 {
eprintln!("dag: {dag:?}");
panic!("dag is cyclic!");
}
tracing::debug!(
"resolving render graph: {}ms",
eprintln!(
"resolved render graph in {}ms",
now.elapsed().as_micros() as f32 / 1e3
);
// create internal resources:
for (i, res) in self.resources.iter_mut().enumerate() {
match res {
GraphResource::ImageDesc(image_desc) => {
tracing::trace!("creating resource #{i:?} with {image_desc:?}");
*res = GraphResource::Image(Arc::new(Image::new(
device.clone(),
image_desc.clone(),
)?));
}
GraphResource::BufferDesc(buffer_desc) => {
tracing::trace!("creating resource #{i:?} with {buffer_desc:?}");
*res = GraphResource::Buffer(Buffer::new(device.clone(), buffer_desc.clone())?);
}
_ => {}
}
}
let now = std::time::Instant::now();
let pool =
commands::SingleUseCommandPool::new(device.clone(), device.graphics_queue().clone())?;
let resources = &self.resources;
let cmds = topological_map
let cmds = topo
.into_iter()
.rev()
.map(|(passes, accesses)| {
let passes = passes
.into_iter()
.filter_map(|i| i.unpack().get_pass_idx())
.map(|i| core::mem::take(&mut self.pass_descs[i]))
.collect::<Vec<_>>();
(passes, accesses)
})
.map({
|(passes, accesses)| {
let cmd = pool.alloc()?;
// transitions
for (&id, &(from, to)) in accesses.iter() {
Self::transition_resource(
resources.get(&id).unwrap(),
&resources[id.0 as usize],
device.dev(),
unsafe { &cmd.buffer() },
from,
@ -1075,7 +512,7 @@ impl RenderGraph {
let outputs = self
.outputs
.iter()
.filter_map(|id| self.resources.remove(id).map(|res| (*id, res)))
.map(|id| (*id, core::mem::take(&mut self.resources[id.0 as usize])))
.collect::<BTreeMap<_, _>>();
outputs
@ -1104,6 +541,9 @@ impl RenderGraph {
GraphResource::Buffer(buffer) => {
buffer_barrier(buffer.handle(), 0, buffer.len(), from, to, None).into()
}
_ => {
unreachable!()
}
};
unsafe {

View file

@ -414,3 +414,799 @@ impl<'a, T: 'a> DerefMut for WithLifetime<'a, T> {
&mut self.0
}
}
bitflags::bitflags! {
pub struct PipelineAccess: u32 {
const TRANSFER = 1 << 0;
const VERTEX_ATTRIBUTE_INPUT = 1 << 1;
const DRAW_INDIRECT = 1 << 2;
const VERTEX_INPUT = 1 << 3;
}
}
pub mod asdf {
use std::collections::{BTreeMap, BTreeSet};
use std::fmt::Display;
use ash::vk;
use crate::render_graph::*;
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
#[repr(u8)]
pub enum PassNode {
First,
Pass(u16),
Last,
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
#[repr(transparent)]
pub struct PackedPassNode(u16);
impl PackedPassNode {
pub fn unpack(self) -> PassNode {
match self.0 {
0 => PassNode::First,
1 => PassNode::Last,
n => PassNode::Pass(n - 2),
}
}
pub fn pack(i: PassNode) -> Self {
Self(match i {
PassNode::First => 0,
PassNode::Last => 1,
PassNode::Pass(n) => n + 2,
})
}
}
impl From<PassNode> for PackedPassNode {
fn from(value: PassNode) -> Self {
Self::pack(value)
}
}
impl From<PackedPassNode> for PassNode {
fn from(value: PackedPassNode) -> Self {
PackedPassNode::unpack(value)
}
}
impl PassNode {
pub fn dag_index(&self) -> u32 {
match self {
PassNode::First => 0,
PassNode::Last => 1,
PassNode::Pass(i) => 2 + *i as u32,
}
}
pub fn into_u32(&self, max_i: u32) -> u32 {
match self {
PassNode::First => 0,
PassNode::Last => max_i + 1,
PassNode::Pass(i) => 1 + *i as u32,
}
}
fn range_full(from: Self, to: Self, max_i: u32) -> std::ops::RangeInclusive<u32> {
from.into_u32(max_i)..=to.into_u32(max_i)
}
pub fn pass(i: usize) -> Self {
Self::Pass(i as u16)
}
pub fn get_pass_idx(&self) -> Option<usize> {
match self {
PassNode::First | PassNode::Last => None,
PassNode::Pass(i) => Some(*i as usize),
}
}
pub fn from_u32(v: u32, max_i: u32) -> Self {
match v {
0 => Self::First,
n if n == 1 + max_i => Self::Last,
n => Self::Pass(n as u16 - 1),
}
}
}
#[derive(Debug, Clone, Copy)]
pub enum Barrier {
Logical,
Execution {
src: vk::PipelineStageFlags2,
dst: vk::PipelineStageFlags2,
},
LayoutTransition {
src: (vk::PipelineStageFlags2, vk::ImageLayout),
dst: (vk::PipelineStageFlags2, vk::ImageLayout),
},
MakeAvailable {
src: (vk::PipelineStageFlags2, vk::AccessFlags2),
dst: vk::PipelineStageFlags2,
},
MakeVisible {
src: vk::PipelineStageFlags2,
dst: (vk::PipelineStageFlags2, vk::AccessFlags2),
},
MemoryBarrier {
src: (vk::PipelineStageFlags2, vk::AccessFlags2),
dst: (vk::PipelineStageFlags2, vk::AccessFlags2),
},
}
impl Display for Barrier {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Barrier::Logical => write!(f, "Logical"),
Barrier::Execution { .. } => write!(f, "Execution"),
Barrier::LayoutTransition { .. } => write!(f, "Layout"),
Barrier::MakeAvailable { .. } => write!(f, "MakeAvailable"),
Barrier::MakeVisible { .. } => write!(f, "MakeVisible"),
Barrier::MemoryBarrier { .. } => write!(f, "MemoryBarrier"),
}
}
}
pub struct NodeRefsMap {
num_resources: usize,
num_passes: usize,
// bitmap of passes referencing rid
references: Vec<u64>,
// range into ref_accesses*: start, end, index
ref_ranges: Vec<(u32, u32, u32)>,
ref_accesses: Vec<(Access, Access)>,
ref_access_passid: Vec<PackedPassNode>,
}
impl NodeRefsMap {
pub fn new(num_resources: usize, num_passes: usize) -> Self {
Self {
num_resources,
num_passes,
references: vec![0; ((num_passes + 2) * num_resources).div_ceil(64) as usize],
ref_ranges: Vec::new(),
ref_accesses: Vec::new(),
ref_access_passid: Vec::new(),
}
}
pub fn allocate_ref_ranges(&mut self, passes: &[PassDesc]) {
let mut rid_passcount = vec![0; self.num_resources];
for pass in passes.iter() {
for rid in pass
.reads
.iter()
.chain(pass.writes.iter())
.map(|id| id.0)
.collect::<BTreeSet<_>>()
{
rid_passcount[rid.0 as usize] += 1;
}
}
tracing::debug!("per-resource pass-count: {rid_passcount:?}");
let mut total = 0;
for num_passes in rid_passcount {
self.ref_ranges.push((total, total + num_passes, 0));
self.ref_accesses
.extend((0..num_passes).map(|_| (Access::empty(), Access::empty())));
self.ref_access_passid
.extend((0..num_passes).map(|_| PackedPassNode(0)));
total += num_passes;
}
tracing::debug!(
"ref_ranges and ref_accesses:\n{:?}\n{:?}\n{:?}",
self.ref_ranges,
self.ref_accesses,
self.ref_access_passid
);
// for resourcedesc in resources: ref first pass
}
fn get_accesses_for_rid_pass_mut(
&mut self,
rid: GraphResourceId,
pass: PackedPassNode,
) -> &mut (Access, Access) {
let (start, _, i) = self.ref_ranges[rid.0 as usize];
let idx = self.ref_access_passid[start as usize..(start + i) as usize]
.binary_search(&pass)
.unwrap_or_else(|_| {
// increase counter
self.ref_ranges[rid.0 as usize].2 += 1;
i as usize
})
+ start as usize;
self.ref_access_passid[idx] = pass;
&mut self.ref_accesses[idx]
}
fn get_reads_for_rid_pass_mut(
&mut self,
rid: GraphResourceId,
pass: PackedPassNode,
) -> &mut Access {
&mut self.get_accesses_for_rid_pass_mut(rid, pass).0
}
fn get_writes_for_rid_pass_mut(
&mut self,
rid: GraphResourceId,
pass: PackedPassNode,
) -> &mut Access {
&mut self.get_accesses_for_rid_pass_mut(rid, pass).1
}
fn get_accesses_for_rid_pass(
&self,
rid: GraphResourceId,
pass: PackedPassNode,
) -> Option<(Access, Access)> {
let (start, _, i) = self.ref_ranges[rid.0 as usize];
let idx = self.ref_access_passid[start as usize..(start + i) as usize]
.binary_search(&pass)
.ok()?
+ start as usize;
Some(self.ref_accesses[idx])
}
fn get_reads_for_rid_pass(
&self,
rid: GraphResourceId,
pass: PackedPassNode,
) -> Option<Access> {
Some(self.get_accesses_for_rid_pass(rid, pass)?.0)
}
fn get_writes_for_rid_pass(
&self,
rid: GraphResourceId,
pass: PackedPassNode,
) -> Option<Access> {
Some(self.get_accesses_for_rid_pass(rid, pass)?.1)
}
fn reference_rid_pass(&mut self, rid: GraphResourceId, pass: PackedPassNode) {
let bit_idx = rid.0 as usize * (self.num_passes + 2) + pass.0 as usize;
let word_idx = bit_idx / 64;
let word_offset = bit_idx % 64;
tracing::debug!(
bit_idx,
word_idx,
word_offset,
"pass: {pass:?} references rid: {rid:?} "
);
self.references[word_idx] |= 1 << word_offset;
}
pub fn ref_passes(&mut self, passes: &[PassDesc]) {
for (i, pass) in passes.iter().enumerate() {
let packed_pass = PassNode::pass(i).into();
for &(rid, access) in &pass.reads {
let read = self.get_reads_for_rid_pass_mut(rid, packed_pass);
*read = *read | access;
// TODO: check for first pass as well
self.reference_rid_pass(rid, PassNode::pass(i).into());
}
for &(rid, access) in &pass.writes {
let write = self.get_writes_for_rid_pass_mut(rid, packed_pass);
*write = *write | access;
// TODO: check for first pass as well
self.reference_rid_pass(rid, PassNode::pass(i).into());
}
}
}
pub fn ref_inputs(&mut self, resources: &[GraphResource]) {
for (i, resource) in resources.iter().enumerate() {
match resource {
GraphResource::ImageDesc(_) | GraphResource::BufferDesc(_) => {
self.reference_rid_pass(GraphResourceId(i as u32), PassNode::First.into());
}
_ => {}
}
}
}
pub fn ref_outputs(&mut self, outputs: &[GraphResourceId]) {
for &rid in outputs {
self.reference_rid_pass(rid, PassNode::Last.into());
}
}
pub fn build_dag(
&self,
) -> petgraph::stable_graph::StableDiGraph<PackedPassNode, (GraphResourceId, Barrier)>
{
struct Edge {
from: PackedPassNode,
to: PackedPassNode,
rid: GraphResourceId,
barrier: Barrier,
}
#[derive(Debug, Clone, Copy)]
enum Ref {
Write(PackedPassNode, Access),
Read(PackedPassNode, Access),
}
impl Ref {
fn node(&self) -> PackedPassNode {
match self {
Ref::Write(node, _) | Ref::Read(node, _) => *node,
}
}
fn access(&self) -> Access {
match self {
Ref::Write(_, access) | Ref::Read(_, access) => *access,
}
}
}
let mut edges = Vec::<Edge>::new();
let bits = crate::util::BitIter::new(
&self.references,
self.num_resources * (self.num_passes + 2),
)
.chunks(self.num_passes + 2);
tracing::debug!("building edges:");
tracing::debug!("chunks: {bits:#?}");
for (i, bits) in bits.enumerate() {
let rid = GraphResourceId(i as u32);
tracing::debug!("rid: {rid:?}");
tracing::debug!("passes: {bits}");
let mut to_make_available = AccessMask::empty();
let mut made_available = AccessMask::empty();
let mut last_ref = Option::<Ref>::None;
let mut last_read = Option::<Ref>::None;
let mut last_write = Option::<Ref>::None;
for pass in bits {
let packed_pass = PackedPassNode(pass as u16);
tracing::debug!("pass: {:?}", packed_pass.unpack());
let read = self.get_reads_for_rid_pass(rid, packed_pass);
if let Some(read) = read {
tracing::debug!("read: {:?}", read);
let make_visible = read.into_access_mask() & !made_available;
if let Some(last_write) = last_write.as_ref() {
let from = last_write.node();
let to = packed_pass;
let from_write = last_write.access();
// if last_write is some, make visible the writes
if !make_visible.is_empty() {
made_available = made_available | make_visible;
edges.push(Edge {
from,
to,
rid,
barrier: Barrier::MakeVisible {
src: from_write.stage,
dst: (make_visible.stage, make_visible.mask),
},
});
}
// make available any changes
if !to_make_available.is_empty() {
edges.push(Edge {
from,
to,
rid,
barrier: Barrier::MakeAvailable {
src: (to_make_available.stage, to_make_available.mask),
dst: read.stage,
},
});
to_make_available = AccessMask::empty();
}
if make_visible.is_empty() && !to_make_available.is_empty() {
// still require a-after-b
edges.push(Edge {
from,
to,
rid,
barrier: Barrier::Execution {
src: from_write.stage,
dst: read.stage,
},
});
}
}
// layout transition from previous pass, either read or write
if let Some(last_ref) = last_ref.as_ref() {
if last_ref.access().layout != read.layout {
let from = last_ref.node();
let to = packed_pass;
edges.push(Edge {
from,
to,
rid,
barrier: Barrier::LayoutTransition {
src: (
last_ref.access().stage,
last_ref.access().layout.unwrap(),
),
dst: (read.stage, read.layout.unwrap()),
},
});
}
}
}
let write = self.get_writes_for_rid_pass(rid, packed_pass);
if let Some(write) = write {
tracing::debug!("write: {:?}", write);
match last_ref.as_ref() {
Some(Ref::Read(node, before)) => {
// execution barrier to ward against write-after-read
edges.push(Edge {
from: *node,
to: packed_pass,
rid,
barrier: Barrier::Execution {
src: before.stage,
dst: write.stage,
},
});
}
Some(Ref::Write(node, before)) => {
// check for layout transition here
if before.layout != write.layout {
edges.push(Edge {
from: *node,
to: packed_pass,
rid,
barrier: Barrier::LayoutTransition {
src: (before.stage, before.layout.unwrap()),
dst: (write.stage, write.layout.unwrap()),
},
});
}
}
_ => {}
}
}
if let Some(read) = read {
last_read = Some(Ref::Read(packed_pass, read));
last_ref = last_read;
}
if let Some(write) = write {
last_write = Some(Ref::Write(packed_pass, write));
last_ref = last_write;
}
}
}
let mut dag = petgraph::stable_graph::StableDiGraph::<
PackedPassNode,
(GraphResourceId, Barrier),
>::new();
let root = dag.add_node(PassNode::First.into());
let output = dag.add_node(PassNode::Last.into());
_ = (root, output);
for i in 0..self.num_passes {
dag.add_node(PassNode::pass(i).into());
}
// insert edges
for edge in edges {
let Edge {
from,
to,
rid,
barrier,
} = edge;
dag.add_edge(
from.unpack().dag_index().into(),
to.unpack().dag_index().into(),
(rid, barrier),
);
}
#[cfg(any(debug_assertions, test))]
std::fs::write(
"render_graph2.dot",
&format!(
"{:?}",
petgraph::dot::Dot::with_attr_getters(
&dag,
&[],
&|_graph, edgeref| {
format!(
"label = \"{},{:#?}\"",
edgeref.weight().0,
edgeref.weight().1,
)
},
&|_graph, noderef| {
format!(
"label = \"Pass({:?})\"",
petgraph::visit::NodeRef::weight(&noderef)
)
}
)
),
)
.expect("writing render_graph repr");
// prune dead ends
let mut sinks = dag
.externals(petgraph::Direction::Outgoing)
.filter(|idx| dag.node_weight(*idx) != Some(&PassNode::Last.into()))
.collect::<Vec<_>>();
while let Some(sink) = sinks.pop() {
let mut neighbors = dag
.neighbors_directed(sink, petgraph::Direction::Incoming)
.detach();
while let Some((edge, node)) = neighbors.next(&dag) {
dag.remove_edge(edge);
if dag
.neighbors_directed(node, petgraph::Direction::Outgoing)
.count()
== 0
{
sinks.push(node);
}
}
dag.remove_node(sink);
}
dag
}
pub fn toposort_dag(
&self,
mut dag: petgraph::stable_graph::StableDiGraph<
PackedPassNode,
(GraphResourceId, Barrier),
>,
) -> Vec<(
Vec<PackedPassNode>,
BTreeMap<GraphResourceId, (Access, Access)>,
)> {
let mut topomap = Vec::new();
let mut sinks = dag
.externals(petgraph::Direction::Incoming)
.collect::<Vec<_>>();
let mut next_sinks = vec![];
loop {
if sinks.is_empty() {
break;
}
let mut passes = Vec::with_capacity(self.num_passes);
let mut barriers = BTreeMap::new();
for &sink in &sinks {
for &(rid, barrier) in dag
.edges_directed(sink, petgraph::Direction::Incoming)
.map(|edge| edge.weight())
{
let before_and_after = match barrier {
Barrier::Logical => None,
Barrier::Execution { src, dst } => Some((
Access {
stage: src,
..Access::empty()
},
Access {
stage: dst,
..Access::empty()
},
)),
Barrier::LayoutTransition {
src: (src, from),
dst: (dst, to),
} => Some((
Access {
stage: src,
layout: Some(from),
..Access::empty()
},
Access {
stage: dst,
layout: Some(to),
..Access::empty()
},
)),
Barrier::MakeAvailable {
src: (stage, mask),
dst,
} => Some((
Access {
stage,
mask,
..Access::empty()
},
Access {
stage: dst,
..Access::empty()
},
)),
Barrier::MakeVisible {
src,
dst: (stage, mask),
} => Some((
Access {
stage: src,
..Access::empty()
},
Access {
stage,
mask,
..Access::empty()
},
)),
Barrier::MemoryBarrier {
src: (src_stage, src_mask),
dst: (dst_stage, dst_mask),
} => Some((
Access {
stage: src_stage,
mask: src_mask,
..Access::empty()
},
Access {
stage: dst_stage,
mask: dst_mask,
..Access::empty()
},
)),
};
if let Some((before, after)) = before_and_after {
// initial access is transitioned at the beginning
// this affects imported resources only.
barriers
.entry(rid)
.and_modify(|(from, to)| {
*from = *from | before;
*to = *to | after;
})
.or_insert((before, after));
}
}
let mut neighbors = dag
.neighbors_directed(sink, petgraph::Direction::Incoming)
.detach();
while let Some((edge, node)) = neighbors.next(&dag) {
dag.remove_edge(edge);
if dag
.neighbors_directed(node, petgraph::Direction::Outgoing)
.count()
== 0
{
next_sinks.push(node);
}
}
passes.push(*dag.node_weight(sink).unwrap());
dag.remove_node(sink);
}
topomap.push((passes, barriers));
core::mem::swap(&mut sinks, &mut next_sinks);
}
topomap
}
}
}
#[derive(Debug, Clone)]
struct BitIter<'a> {
bits: &'a [u64],
num_bits: usize,
bit_offset: usize,
bit_index: usize,
}
impl<'a> std::fmt::Display for BitIter<'a> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("BitIter")
.field_with("bits", |f| {
write!(f, "[")?;
for bit in self.clone() {
write!(f, "{bit}, ")?;
}
write!(f, " ]")
})
.finish()
}
}
impl<'a> BitIter<'a> {
fn new(bits: &'a [u64], num_bits: usize) -> Self {
Self {
bits,
num_bits,
bit_index: 0,
bit_offset: 0,
}
}
fn chunks(self, chunk_size: usize) -> ChunkedBitIter<'a> {
ChunkedBitIter {
inner: self,
chunk_size,
pos: 0,
}
}
}
impl Iterator for BitIter<'_> {
type Item = usize;
fn next(&mut self) -> Option<Self::Item> {
loop {
if self.bit_index >= self.num_bits {
return None;
}
let bit_index = self.bit_index + self.bit_offset;
let byte_idx = bit_index / 64;
let byte_offset = bit_index % 64;
self.bit_index += 1;
if (self.bits[byte_idx] >> byte_offset) & 1 == 1 {
return Some(self.bit_index - 1);
}
}
}
}
#[derive(Debug)]
struct ChunkedBitIter<'a> {
inner: BitIter<'a>,
chunk_size: usize,
pos: usize,
}
impl<'a> Iterator for ChunkedBitIter<'a> {
type Item = BitIter<'a>;
fn next(&mut self) -> Option<Self::Item> {
if self.pos >= self.inner.num_bits {
return None;
}
let bits = (self.inner.num_bits - self.pos).min(self.chunk_size);
let iter = BitIter {
bits: &self.inner.bits[self.pos / 64..],
bit_offset: self.pos % 64,
bit_index: 0,
num_bits: bits,
};
self.pos += bits;
Some(iter)
}
}