Compare commits

..

No commits in common. "2293b514cf3531987a9ff627697b0fc72c679920" and "d124ae2b599351c77a4eb5551b811804f0733466" have entirely different histories.

11 changed files with 167 additions and 1457 deletions

1
.gitignore vendored
View file

@ -1,3 +1,2 @@
/target
/Cargo.lock
/.direnv/

View file

@ -1,9 +1,3 @@
[workspace]
resolver = "3"
members = [
"crates/lexer"
]
[package]
name = "compiler"
version = "0.1.0"
@ -22,16 +16,5 @@ paste = "1.0.15"
petgraph = "0.6.5"
thiserror = "1.0.63"
unicode-xid = "0.2.4"
tracing = "0.1.41"
werkzeug = { path = "../../rust/werkzeug" }
[workspace.dependencies]
unicode-xid = "0.2.4"
tracing = "0.1.41"
thiserror = "1.0.63"
itertools = "0.13.0"
werkzeug = { path = "../../rust/werkzeug" }
trie = { path = "../../rust/trie" }
werkzeug = { path = "../../rust/werkzeug" }

View file

@ -1,12 +0,0 @@
[package]
name = "lexer"
version = "0.1.0"
edition = "2024"
[dependencies]
tracing = { workspace = true }
werkzeug = { workspace = true }
thiserror = { workspace = true }
itertools = { workspace = true }
trie = { workspace = true }
unicode-xid = { workspace = true }

View file

@ -1,394 +0,0 @@
use crate::{Source, Token, is_things};
use itertools::Itertools;
use werkzeug::iter::{FallibleMapIter, NextIf};
#[derive(Debug, thiserror::Error, PartialEq, Eq)]
pub enum Error {
#[error("{0}")]
StringError(String),
#[error("Exp part of floating constant had no digits.")]
FloatingConstantExpPartNoDigit,
#[error("constant cannot start with leading underscore '_'.")]
NumericalConstantDigitLeadingUnderscore,
#[error("Expected digit here for constant.")]
NumericalConstantDigitNoDigit,
#[error("Expected digit here for integer constant.")]
IntegralTypeExpectedDigit,
#[error("Floating constant has invalid trailing type.")]
FloatingConstantInvalidTrailingType,
#[error("Invalid token.")]
InvalidToken,
#[error("Identifier starts with invalid character.")]
ExpectedIdStartForIdentifier,
#[error("Unknown suffix in constant.")]
NumericalConstantUnknownSuffix,
}
type Result<T> = core::result::Result<T, Error>;
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum Radix {
Hex,
Bin,
Dec,
Oct,
}
impl Radix {
#[allow(unused)]
/// must be called with one of `['b','x','d','o']`
unsafe fn from_char_unchecked(c: char) -> Self {
match c.to_ascii_lowercase() {
'o' => Self::Oct,
'b' => Self::Bin,
'x' => Self::Hex,
'd' => Self::Dec,
_ => unreachable!(),
}
}
fn from_char(c: char) -> Option<Self> {
match c.to_ascii_lowercase() {
'o' => Some(Self::Oct),
'b' => Some(Self::Bin),
'x' => Some(Self::Hex),
'd' => Some(Self::Dec),
_ => None,
}
}
#[allow(unused)]
pub fn radix(self) -> u8 {
match self {
Radix::Hex => 16,
Radix::Bin => 2,
Radix::Oct => 8,
Radix::Dec => 10,
}
}
fn to_token(self) -> Token {
match self {
Radix::Hex => Token::IntegerHexConstant,
Radix::Bin => Token::IntegerBinConstant,
Radix::Oct => Token::IntegerOctConstant,
Radix::Dec => Token::IntegerConstant,
}
}
pub fn from_token(token: Token) -> Option<Self> {
match token {
Token::IntegerHexConstant => Some(Radix::Hex),
Token::IntegerBinConstant => Some(Radix::Bin),
Token::IntegerOctConstant => Some(Radix::Oct),
Token::IntegerConstant => Some(Radix::Dec),
_ => None,
}
}
pub fn map_digit(self, c: char) -> u8 {
match self {
Radix::Hex => match c {
'0'..='9' => c as u8 - b'0',
'a'..='f' => 10 + c as u8 - b'a',
'A'..='F' => 10 + c as u8 - b'A',
_ => unreachable!(),
},
Radix::Bin => match c {
'0'..='1' => c as u8 - b'0',
_ => unreachable!(),
},
Radix::Dec => match c {
'0'..='9' => c as u8 - b'0',
_ => unreachable!(),
},
Radix::Oct => match c {
'0'..='7' => c as u8 - b'0',
_ => unreachable!(),
},
}
}
pub fn folding_method(self) -> fn(u64, char) -> u64 {
match self {
Radix::Hex => {
fn fold(acc: u64, c: char) -> u64 {
let digit = match c {
'0'..='9' => c as u8 - b'0',
'a'..='f' => c as u8 - b'a',
'A'..='F' => c as u8 - b'A',
_ => unreachable!(),
};
acc * 16 + digit as u64
}
fold
}
Radix::Bin => {
fn fold(acc: u64, c: char) -> u64 {
let digit = match c {
'0'..='1' => c as u8 - b'0',
_ => unreachable!(),
};
acc * 2 + digit as u64
}
fold
}
Radix::Dec => {
fn fold(acc: u64, c: char) -> u64 {
let digit = match c {
'0'..='9' => c as u8 - b'0',
_ => unreachable!(),
};
acc * 10 + digit as u64
}
fold
}
Radix::Oct => {
fn fold(acc: u64, c: char) -> u64 {
let digit = match c {
'0'..='7' => c as u8 - b'0',
_ => unreachable!(),
};
acc * 8 + digit as u64
}
fold
}
}
}
pub fn is_digit(self) -> fn(char) -> bool {
match self {
Radix::Hex => crate::is_things::is_hex_digit,
Radix::Bin => crate::is_things::is_bin_digit,
Radix::Oct => crate::is_things::is_oct_digit,
Radix::Dec => crate::is_things::is_digit,
}
}
}
// where DIGIT is defined by radix:
// DIGITS <-
// if allow_leading_underscore: `_`* DIGIT (DIGIT|`_`)*
// else: DIGIT (DIGIT|`_`)*
fn parse_digit_part(
source: &mut Source,
allow_leading_underscore: bool,
radix: Radix,
) -> Result<()> {
let is_digit = radix.is_digit();
if allow_leading_underscore {
let _underscore = source.take_while_ref(|&c| c == '_').count();
}
let _need_digit = source.next_if(|&c| is_digit(c)).ok_or_else(|| {
if source.peek() == Some(&'_') {
Error::NumericalConstantDigitLeadingUnderscore
} else {
Error::NumericalConstantDigitNoDigit
}
})?;
let _rest = source.take_while_ref(|&c| is_digit(c) || c == '_').count();
Ok(())
}
// IntegralType <-
// ( 'u' | 'i' ) DIGITS+
fn try_parse_integral_type(source: &mut Source) -> Result<Option<()>> {
if !source.next_if(|&c| c == 'u' || c == 'i').is_some() {
return Ok(None);
}
if source
.take_while_ref(|&c| crate::is_things::is_digit(c))
.count()
<= 0
{
return Err(Error::IntegralTypeExpectedDigit);
};
Ok(Some(()))
}
// returns `Err(E)` if it failed to parse.
// returns `Ok(None)` if no exp part was found.
// returns `Ok(Some(()))` if an exp part was found and parsed.
//
// EXP_PART <-
// (`e`|`E`) (`-`|`+`)? DEC_DIGITS
fn try_parse_exp_part(source: &mut Source) -> Result<Option<()>> {
if source.next_if(|&c| c.to_ascii_lowercase() == 'e').is_some() {
let _sign = source.next_if(|&c| c == '-' || c == '+');
if source
.take_while_ref(|&c| crate::is_things::is_digit(c))
.count()
.lt(&1)
{
// need digits following exp notation
Err(Error::FloatingConstantExpPartNoDigit)
} else {
Ok(Some(()))
}
} else {
Ok(None)
}
}
// CONSTANT <-
// DEC_DIGITS IntegralType?
// `0x` HEX_DIGITS IntegralType?
// `0b` BIN_DIGITS IntegralType?
// `0o` OCT_DIGITS IntegralType?
// DEC_DIGITS FloatingType?
// `.` DEC_DIGITS EXP_PART? FloatingType?
// DEC_DIGITS `.` DEC_DIGITS? EXP_PART? FloatingType?
fn parse_constant_inner(source: &mut Source) -> Result<Token> {
let zero = source.next_if(|&c| c == '0').is_some();
let radix = zero
.then(|| source.next_if_map(|c| Radix::from_char(c)))
.flatten();
if let Some(radix) = radix {
parse_digit_part(source, false, radix)?;
if source.peek().map(|&c| c == 'u' || c == 'i') == Some(true) {
try_parse_integral_type(source)?;
}
return Ok(radix.to_token());
}
// if zero: `_`* DIGIT (DIGIT|`_`)*
// else: DIGIT (DIGIT|`_`)*
_ = match parse_digit_part(source, zero, Radix::Dec) {
Ok(_) => Ok(()),
Err(Error::NumericalConstantDigitNoDigit) if zero => Ok(()),
Err(e) => Err(e),
}?;
if let Some(_) = source.try_map_iter_if(|source| try_parse_integral_type(source))? {
return Ok(Token::IntegerConstant);
}
let dot = source.next_if(|&c| c == '.').is_some();
if dot {
parse_digit_part(source, false, Radix::Dec)?;
}
// parse exp notation
let exp = try_parse_exp_part(source)?.is_some();
// trailing FloatingType?
let floating = if source.next_if(|&c| c == 'f').is_some() {
let digits = source.next_tuple::<(char, char)>();
if !(digits == Some(('6', '4')) || digits == Some(('3', '2'))) {
// need either f64 or f32 here!
return Err(Error::FloatingConstantInvalidTrailingType);
}
true
} else {
false
};
let token = match (dot, exp, floating) {
(false, false, false) => Token::IntegerConstant,
(true, false, _) => Token::DotFloatingConstant,
(true, true, _) => Token::DotFloatingExpConstant,
(false, true, _) => Token::FloatingExpConstant,
(false, _, _) => Token::FloatingConstant,
};
Ok(token)
}
pub(crate) fn parse_constant(source: &mut Source) -> Result<Token> {
let constant = parse_constant_inner(source)?;
// char following a constant must not be id_continue
if source
.peek()
.map(|&c| crate::is_things::is_id_continue(c))
.unwrap_or(false)
{
return Err(Error::NumericalConstantUnknownSuffix);
}
Ok(constant)
}
pub(crate) fn parse_string_or_char_constant(source: &mut Source) -> Result<Token> {
let quote = source
.next_if(|&c| c == '"' || c == '\'')
.ok_or(Error::InvalidToken)?;
let is_char = quote == '\'';
let mut escaped = false;
let mut closed = false;
while let Some(c) = source.next() {
if escaped {
// accept any escaped char
escaped = false;
continue;
}
if c == '\\' {
escaped = true;
continue;
}
if c == quote {
closed = true;
break;
}
}
if !closed {
return Err(Error::StringError("Unterminated string/char.".into()));
}
if is_char {
Ok(Token::CharConstant)
} else {
Ok(Token::StringConstant)
}
}
#[cfg(test)]
mod tests {
use super::*;
fn make_source(s: &'_ str) -> Source<'_> {
s.chars().peekable().into()
}
#[test]
fn parse_constant_number() {
assert_eq!(
parse_constant(&mut make_source("0x1A3F_u32")),
Ok(Token::IntegerHexConstant)
);
assert_eq!(
parse_constant(&mut make_source("13f32")),
Ok(Token::FloatingConstant)
);
assert_eq!(
parse_constant(&mut make_source("0b1011_0010i16")),
Ok(Token::IntegerBinConstant)
);
assert_eq!(
parse_constant(&mut make_source("0o755u8")),
Ok(Token::IntegerOctConstant)
);
assert_eq!(
parse_constant(&mut make_source("42i64")),
Ok(Token::IntegerConstant)
);
assert_eq!(
parse_constant(&mut make_source("3.14f64")),
Ok(Token::DotFloatingConstant)
);
assert_eq!(
parse_constant(&mut make_source("2.71828e0f32")),
Ok(Token::DotFloatingExpConstant)
);
assert_eq!(
parse_constant(&mut make_source("22e23")),
Ok(Token::FloatingExpConstant)
);
}
}

View file

@ -1,686 +0,0 @@
#![feature(slice_swap_unchecked, iter_collect_into)]
mod is_things {
/// True if `c` is considered a whitespace according to Rust language definition.
/// See [Rust language reference](https://doc.rust-lang.org/reference/whitespace.html)
/// for definitions of these classes.
pub fn is_whitespace(c: char) -> bool {
// This is Pattern_White_Space.
//
// Note that this set is stable (ie, it doesn't change with different
// Unicode versions), so it's ok to just hard-code the values.
matches!(
c,
// Usual ASCII suspects
'\u{0009}' // \t
| '\u{000A}' // \n
| '\u{000B}' // vertical tab
| '\u{000C}' // form feed
| '\u{000D}' // \r
| '\u{0020}' // space
// NEXT LINE from latin1
| '\u{0085}'
// Bidi markers
| '\u{200E}' // LEFT-TO-RIGHT MARK
| '\u{200F}' // RIGHT-TO-LEFT MARK
// Dedicated whitespace characters from Unicode
| '\u{2028}' // LINE SEPARATOR
| '\u{2029}' // PARAGRAPH SEPARATOR
)
}
/// True if `c` is valid as a first character of an identifier.
/// See [Rust language reference](https://doc.rust-lang.org/reference/identifiers.html) for
/// a formal definition of valid identifier name.
pub fn is_id_start(c: char) -> bool {
// This is XID_Start OR '_' (which formally is not a XID_Start).
c == '_' || c == '-' || unicode_xid::UnicodeXID::is_xid_start(c)
}
/// True if `c` is valid as a non-first character of an identifier.
/// See [Rust language reference](https://doc.rust-lang.org/reference/identifiers.html) for
/// a formal definition of valid identifier name.
pub fn is_id_continue(c: char) -> bool {
unicode_xid::UnicodeXID::is_xid_continue(c) || c == '-'
}
/// The passed string is lexically an identifier.
pub fn is_ident(string: &str) -> bool {
let mut chars = string.chars();
if let Some(start) = chars.next() {
is_id_start(start) && chars.all(is_id_continue)
} else {
false
}
}
#[expect(dead_code)]
pub fn is_digit(ch: char) -> bool {
('0'..='9').contains(&ch)
}
#[expect(dead_code)]
pub fn is_bin_digit(ch: char) -> bool {
ch == '0' || ch == '1'
}
#[expect(dead_code)]
pub fn is_nonzero_digit(ch: char) -> bool {
('1'..='9').contains(&ch)
}
#[expect(dead_code)]
pub fn is_oct_digit(ch: char) -> bool {
('0'..='7').contains(&ch)
}
#[expect(dead_code)]
pub fn is_hex_digit(ch: char) -> bool {
('0'..='9').contains(&ch) || ('a'..='f').contains(&ch) || ('A'..='F').contains(&ch)
}
}
macro_rules! tokens {
($vis:vis $ty_name:ident:
{
$($name2:ident),*
},
{
$($name:ident => $lexeme:literal),*
}) => {
#[allow(dead_code)]
#[derive(Debug, Clone, Copy, Eq, PartialEq, Ord, PartialOrd, Hash)]
$vis enum $ty_name {
$($name,
)*
$($name2,)*
}
impl ::core::fmt::Display for $ty_name {
fn fmt(&self, f: &mut ::core::fmt::Formatter<'_>) -> ::core::fmt::Result {
match self {
$(Self::$name => write!(f, "{}", $lexeme),)*
$(Self::$name2 => write!(f, "<{}>", stringify!($name2))),*
}
}
}
#[allow(dead_code)]
impl $ty_name {
$vis fn lexeme(&self) -> Option<&'static str> {
match self {
$(Self::$name => Some($lexeme),)*
$(Self::$name2 => None),*
}
}
/// returns the number of chars in this lexeme
$vis fn lexeme_len(&self) -> usize {
self.lexeme().map(|lexeme|lexeme.chars().count()).unwrap_or(0)
}
/// returns the number of chars in this lexeme
$vis fn lexeme_len_utf8(&self) -> usize {
self.lexeme().map(|lexeme|lexeme.len()).unwrap_or(0)
}
$vis fn maybe_ident(&self) -> bool {
self.lexeme().map(|lexeme| crate::is_things::is_ident(lexeme)).unwrap_or(false)
}
$vis fn lexemes() -> &'static [(Self, &'static str)] {
&[
$((Self::$name, $lexeme)),*
]
}
}
};
}
tokens!(pub Token: {
Eof,
ParseError,
// Marker Token for any Comment
Comment,
DocComment,
// Marker Token for any pre-processing directive
CharConstant,
IntegerConstant,
IntegerHexConstant,
IntegerBinConstant,
IntegerOctConstant,
FloatingConstant,
FloatingExpConstant,
DotFloatingConstant,
DotFloatingExpConstant,
StringConstant,
Ident
},
// Lexical Tokens:
{
SlashSlash => "//",
SlashSlashSlash => "///",
// SlashStar => "/*",
// SlashStarStar => "/**",
//StarSlash => "*/",
// Punctuation:
OpenParens => "(",
CloseParens => ")",
OpenBrace => "{",
CloseBrace => "}",
OpenSquareBracket => "[",
CloseSquareBracket => "]",
Semi => ";",
Comma => ",",
Elipsis3 => "...",
Elipsis2 => "..",
Colon => ":",
Equal => "=",
// Keywords:
Void => "void",
Bool => "bool",
F32 => "f32",
F64 => "f64",
ISize => "isize",
USize => "usize",
Const => "const",
Volatile => "volatile",
Noalias => "noalias",
Fn => "fn",
Let => "let",
Var => "var",
If => "if",
As => "as",
Else => "else",
Return => "return",
Struct => "struct",
Type => "type",
Union => "union",
Enum => "enum",
Packed => "packed",
Extern => "extern",
Pub => "pub",
// Operators
Dot => ".",
MinusGreater => "->",
Bang => "!",
Tilde => "~",
Plus => "+",
PlusPlus => "++",
Minus => "-",
MinusMinus => "--",
Star => "*",
Slash => "/",
Percent => "%",
Less => "<",
Greater => ">",
LessEqual => "<=",
GreaterEqual => ">=",
EqualEqual => "==",
BangEqual => "!=",
PipePipe => "||",
AmpersandAmpersand => "&&",
Ampersand => "&",
Caret => "^",
Pipe => "|",
LessLess => "<<",
GreaterGreater => ">>",
Question => "?",
PlusEqual => "+=",
MinusEqual => "-=",
StarEqual => "*=",
SlashEqual => "/=",
PercentEqual => "%=",
AmpersandEqual => "&=",
PipeEqual => "|=",
CaretEqual => "^=",
LessLessEqual => "<<=",
GreaterGreaterEqual => ">>="
});
impl Token {
pub fn is_assignment_op(self) -> bool {
match self {
Token::PlusEqual
| Token::MinusEqual
| Token::StarEqual
| Token::SlashEqual
| Token::PercentEqual
| Token::PipeEqual
| Token::CaretEqual
| Token::AmpersandEqual
| Token::LessLessEqual
| Token::GreaterGreaterEqual
| Token::Equal => true,
_ => false,
}
}
pub fn is_unary_op(self) -> bool {
match self {
Token::Plus | Token::Minus | Token::Star | Token::Ampersand | Token::Bang => true,
_ => false,
}
}
pub fn is_binary_op(self) -> bool {
match self {
Token::Star
| Token::Slash
| Token::Percent
| Token::Pipe
| Token::Ampersand
| Token::Caret
| Token::Plus
| Token::Minus
| Token::PipePipe
| Token::AmpersandAmpersand
| Token::BangEqual
| Token::EqualEqual
| Token::Less
| Token::Greater
| Token::LessEqual
| Token::GreaterEqual
| Token::LessLess
| Token::GreaterGreater => true,
_ => false,
}
}
}
/// A list of lexemes used by the `LexemeParser`.
/// `lexemes` contains every token that has a defined lexeme, such as `fn`, `f32`, `const`, etc.
/// The `LexemeList` keeps track of two offsets into the `lexemes` array,
/// splitting it into three windows:
/// - [0, start_candidates) - tokens that are still being considered for parsing
/// - [start_candidates, end_candidates) - the tokens which this lexeme matches
/// - [end_candidates, len) - tokens that have been filtered out and are no longer considered
/// On each iteration of the parsing loop, the remaining tokens are matched
/// against the next character and, if they match completely, are swapped into
/// the candidates window, or swapped to the end if they don't.
struct LexemeList {
lexemes: Box<[Token]>,
start_candidates: usize,
end_candidates: usize,
filtered: Vec<(usize, FilterResult)>,
}
enum FilterResult {
Remove,
Candidate,
}
impl LexemeList {
fn new() -> Self {
let lexemes = Token::lexemes()
.iter()
.map(|(tok, _)| tok.clone())
.collect::<Box<_>>();
Self {
start_candidates: lexemes.len(),
end_candidates: lexemes.len(),
lexemes,
filtered: Vec::new(),
}
}
fn clear(&mut self) {
self.start_candidates = self.lexemes.len();
self.end_candidates = self.lexemes.len();
}
fn remaining(&self) -> &[Token] {
&self.lexemes[0..self.start_candidates]
}
fn candidates(&self) -> &[Token] {
&self.lexemes[self.start_candidates..self.end_candidates]
}
fn step(&mut self, ch: char, pos: usize) {
// smartly reuse allocation for `filtered`
// truly one of the premature optimizations.
// but it just feels good, innit?
let mut filtered = core::mem::take(&mut self.filtered);
self.remaining()
.iter()
.enumerate()
.filter_map(|(i, tok)| {
let bytes = tok.lexeme().unwrap().as_bytes();
// SAFETY: all tokens in `self.remaining()` are lexical tokens, and
// they are all valid ascii
let c = unsafe {
// TODO: maybe keep a list of `Char<'_>`s around in order to
// support fully utf8 tokens?
char::from_u32_unchecked(bytes[pos] as u32)
};
match c == ch {
false => Some((i, FilterResult::Remove)),
true if bytes.len() <= pos + 1 => Some((i, FilterResult::Candidate)),
true => None,
}
})
.collect_into(&mut filtered);
// iterate in reverse order so that we can safely swap elements
// drain here so that we can possibly reuse the `filtered` Vec allcoation
filtered.drain(..).rev().for_each(|(i, f)| {
match f {
// for candidates, swap the candidate with the last remaining
// token, then dec `start_candidates`
FilterResult::Candidate => {
// SAFETY: we know that `i` and `self.start_candidates - 1`
// are both valid indices: `self.start_candidates` starts at
// the end and each time it is decremented, one more element
// is removed from the front, so that as long as an element
// is remaining, `self.start_candidates` is always greater
// than 0.
// the order of the remaining elements is not meaningfully
// impacted because we only ever swap with elements after
// `i`, and `i` is the greatest index we will touch.
unsafe {
self.lexemes.swap_unchecked(i, self.start_candidates - 1);
self.start_candidates = self.start_candidates.saturating_sub(1);
}
}
// for removes, swap the last candidate with the last remainign
// token, then swap the remove with the last candidate, then dec
// `end_candidates` and `start_candidates`
FilterResult::Remove => {
unsafe {
// in the case that `start_candidates` ==
// `end_candidates`, no swap happens and that's fine.
// remove this: v
// [a,b,c][d,e,f][g,h,i]
// swap these: ^ ^
// [a,b,f][d,e,c][g,h,i]
// swap these: ^ ^
// [a,c,f][d,e,b][g,h,i]
// decrement both counters:
// [a,c][f,d,e][b,g,h,i]
self.lexemes
.swap_unchecked(self.start_candidates - 1, self.end_candidates - 1);
self.lexemes.swap_unchecked(i, self.end_candidates - 1);
self.start_candidates = self.start_candidates.saturating_sub(1);
self.end_candidates = self.end_candidates.saturating_sub(1);
}
}
}
});
// replace `filtered`
self.filtered = filtered;
}
}
/// Helper type for parsing tokens that have a defined lexeme, such as `fn`,
/// `f32`, `const`, etc. Tokens with variable lexemes, such as primitive
/// integral types, constants or identifiers are not parsed by this.
pub struct LexemeParser {
lexemes: LexemeList,
len: usize,
}
impl LexemeParser {
pub fn new() -> Self {
Self {
lexemes: LexemeList::new(),
len: 0,
}
}
pub fn parse(&mut self, mut tokens: impl Iterator<Item = char>) -> Option<Token> {
self.lexemes.clear();
loop {
let Some(ch) = tokens.next() else {
break;
};
if crate::is_things::is_whitespace(ch) {
break;
}
self.lexemes.step(ch, self.len);
if self.lexemes.remaining().is_empty() {
break;
}
}
self.lexemes.candidates().last().copied()
}
}
use itertools::Itertools;
use trie::Tree;
#[derive(Debug, Clone, Copy)]
struct CountingIterator<I: Iterator> {
iter: I,
count: usize,
}
impl<I: Iterator> From<I> for CountingIterator<I> {
fn from(iter: I) -> Self {
Self { iter, count: 0 }
}
}
impl<I: Iterator<Item = char>> Iterator for CountingIterator<I> {
type Item = I::Item;
fn next(&mut self) -> Option<Self::Item> {
self.iter.next().inspect(|c| self.count += c.len_utf8())
}
}
impl<I: Iterator> CountingIterator<I> {
pub(crate) fn offset(&self) -> usize {
self.count
}
}
impl<I: Iterator> core::ops::Deref for CountingIterator<I> {
type Target = I;
fn deref(&self) -> &Self::Target {
&self.iter
}
}
impl<I: Iterator> core::ops::DerefMut for CountingIterator<I> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.iter
}
}
type Source<'a> = CountingIterator<core::iter::Peekable<core::str::Chars<'a>>>;
pub struct TokenIterator<'a> {
trie: Tree<char, Token>,
source: &'a str,
offset: usize,
}
impl<'a> TokenIterator<'a> {
pub fn new(source: &'a str) -> Self {
let mut trie = Tree::new();
for (token, token_str) in Token::lexemes() {
trie.insert(token_str.chars(), *token);
}
Self {
trie,
source,
offset: 0,
}
}
fn peekable_source(&self) -> Source<'a> {
CountingIterator::from(self.source[self.offset..].chars().peekable())
}
fn parse(&mut self) -> Option<Token> {
let mut iter = CountingIterator::from(self.source[self.offset..].chars());
match self.trie.get_closest(&mut iter) {
Some(token) => {
// skip the peeked item
self.offset += token.lexeme_len();
Some(*token)
}
None => None,
}
}
fn skip_whitespaces(&mut self) -> usize {
self.skip_while(is_things::is_whitespace)
}
fn skip(&mut self, mut n: usize) -> usize {
self.skip_while(|_| {
n -= 1;
n > 0
})
}
fn skip_while(&mut self, mut pred: impl FnMut(char) -> bool) -> usize {
let mut count = 0;
loop {
let Some(c) = self.source[self.offset..].chars().next() else {
break;
};
if pred(c) {
self.offset += c.len_utf8();
count += c.len_utf8();
continue;
} else {
break;
}
}
count
}
}
impl<'a> Iterator for TokenIterator<'a> {
type Item = (Token, &'a str);
fn next(&mut self) -> Option<Self::Item> {
// skip whitespace
self.skip_whitespaces();
let start = self.offset;
let mut source = self.peekable_source();
let mut cursor = self.peekable_source();
let token = match cursor.next() {
Some('0'..='9') => {
let token = complex_tokens::parse_constant(&mut source).ok()?;
self.offset += source.offset();
Some((token, &self.source[start..self.offset]))
}
Some('.') if cursor.next().map_or(false, is_things::is_digit) => {
let token = complex_tokens::parse_constant(&mut source).ok()?;
self.offset += source.offset();
Some((token, &self.source[start..self.offset]))
}
Some('\'' | '"') => {
let token = complex_tokens::parse_string_or_char_constant(&mut source).ok()?;
self.offset += source.offset();
Some((token, &self.source[start..self.offset]))
}
_ => match self.parse().map(|tok| match tok {
Token::SlashSlash => {
self.skip_while(|c| c == '\n');
(Token::Comment)
}
Token::SlashSlashSlash => {
self.skip_while(|c| c == '\n');
(Token::DocComment)
}
_ => tok,
}) {
Some(tok) => {
if tok.maybe_ident() && self.skip_while(|c| is_things::is_id_continue(c)) > 0 {
Some((Token::Ident, &self.source[start..self.offset]))
} else {
Some((tok, &self.source[start..self.offset]))
}
}
None => {
if self
.peekable_source()
.next()
.map_or(false, |c| is_things::is_id_start(c))
{
self.skip(1);
self.skip_while(|c| is_things::is_id_continue(c));
Some((Token::Ident, &self.source[start..self.offset]))
} else {
None
}
}
},
};
token
}
}
mod complex_tokens;
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_iterator() {
let tokens = "fn let void+++(++bool)";
let mut lexer = TokenIterator::new(&tokens);
assert_eq!(lexer.next(), Some((Token::Fn, "fn")));
assert_eq!(lexer.next(), Some((Token::Let, "let")));
assert_eq!(lexer.next(), Some((Token::Void, "void")));
assert_eq!(lexer.next(), Some((Token::PlusPlus, "++")));
assert_eq!(lexer.next(), Some((Token::Plus, "+")));
assert_eq!(lexer.next(), Some((Token::OpenParens, "(")));
assert_eq!(lexer.next(), Some((Token::PlusPlus, "++")));
assert_eq!(lexer.next(), Some((Token::Bool, "bool")));
assert_eq!(lexer.next(), Some((Token::CloseParens, ")")));
assert_eq!(lexer.next(), None);
}
#[test]
fn complex_iterator() {
let tokens = "fn my-function(x: i32, y: f32) -> f32 { return x + y; }";
let mut lexer = TokenIterator::new(&tokens);
assert_eq!(lexer.next(), Some((Token::Fn, "fn")));
assert_eq!(lexer.next(), Some((Token::Ident, "my-function")));
assert_eq!(lexer.next(), Some((Token::OpenParens, "(")));
assert_eq!(lexer.next(), Some((Token::Ident, "x")));
assert_eq!(lexer.next(), Some((Token::Colon, ":")));
assert_eq!(lexer.next(), Some((Token::Ident, "i32")));
assert_eq!(lexer.next(), Some((Token::Comma, ",")));
assert_eq!(lexer.next(), Some((Token::Ident, "y")));
assert_eq!(lexer.next(), Some((Token::Colon, ":")));
assert_eq!(lexer.next(), Some((Token::F32, "f32")));
assert_eq!(lexer.next(), Some((Token::CloseParens, ")")));
assert_eq!(lexer.next(), Some((Token::MinusGreater, "->")));
assert_eq!(lexer.next(), Some((Token::F32, "f32")));
assert_eq!(lexer.next(), Some((Token::OpenBrace, "{")));
assert_eq!(lexer.next(), Some((Token::Return, "return")));
assert_eq!(lexer.next(), Some((Token::Ident, "x")));
assert_eq!(lexer.next(), Some((Token::Plus, "+")));
assert_eq!(lexer.next(), Some((Token::Ident, "y")));
assert_eq!(lexer.next(), Some((Token::Semi, ";")));
assert_eq!(lexer.next(), Some((Token::CloseBrace, "}")));
assert_eq!(lexer.next(), None);
}
}

View file

@ -20,11 +20,11 @@
},
"nixpkgs": {
"locked": {
"lastModified": 1757745802,
"narHash": "sha256-hLEO2TPj55KcUFUU1vgtHE9UEIOjRcH/4QbmfHNF820=",
"lastModified": 1753939845,
"narHash": "sha256-K2ViRJfdVGE8tpJejs8Qpvvejks1+A4GQej/lBk5y7I=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "c23193b943c6c689d70ee98ce3128239ed9e32d1",
"rev": "94def634a20494ee057c76998843c015909d6311",
"type": "github"
},
"original": {
@ -62,11 +62,11 @@
"nixpkgs": "nixpkgs_2"
},
"locked": {
"lastModified": 1757989933,
"narHash": "sha256-9cpKYWWPCFhgwQTww8S94rTXgg8Q8ydFv9fXM6I8xQM=",
"lastModified": 1754102567,
"narHash": "sha256-d6nZ+1e4VDqW6VAwfx9EAUDJdPxSwqwGiuli32FEgoE=",
"owner": "oxalica",
"repo": "rust-overlay",
"rev": "8249aa3442fb9b45e615a35f39eca2fe5510d7c3",
"rev": "08ff39bf869cadca3102b39824f4c7025186b7dc",
"type": "github"
},
"original": {

View file

@ -5,43 +5,30 @@
// Visitor pattern has lots of unused arguments
#![allow(unused_variables)]
use std::collections::{HashMap, HashSet};
use crate::ast2::tag::{AstNode, AstNodeExt};
use std::collections::HashMap;
use super::{Ast, Index, intern, visitor::AstVisitorTrait};
type Id = u32;
trait TypeVariance {
type T;
type Opposite;
}
#[derive(Debug, Clone)]
enum TypeHead<T: TypeVariance> {
Real(intern::Index),
Function { args: Vec<T::T>, ret: T::Opposite },
enum Type {
Reified(intern::Index),
Variable(Id),
}
/// Variance of a type parameter or constraint.
/// A function of type `A -> B` is covariant in `B` and contravariant in `A`.
/// This means that a type `T` may be substituted for `A` if `T` is a subtype of
/// `A`, that is, every `T` is also an `A`,
/// but a type `T` may only be substituted for `B` if `T` is a supertype of `B`,
/// that is, every `B` is also a `T`.
/// This means that a type `T` may be substituted for `A` if `T` is a subtype of `A`, but
/// a type `T` may only be substituted for `B` if `T` is a supertype of `B`.
///
/// Namely, in a type system with `int` and `nat <: int`, for a function `f: int
/// -> int` in the expression `let u: int = 3; let t: nat = f(u);`, `u` may
/// safely be used as an argument to `f` because `nat <: int`, but `f(u`)` may
/// not be assigned to `t` because `int <: nat` is not true.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, PartialOrd, Ord)]
enum Variance {
/// A Positive, or union relationship between types.
/// used in value-places.
#[doc(alias = "Positive")]
Covariant,
/// A Negative, or intersection relationship between types.
/// used in use-places.
#[doc(alias = "Negative")]
Contravariant,
}
@ -50,81 +37,27 @@ struct Value(Id);
#[derive(Debug, Clone, Copy)]
struct Use(Id);
impl TypeVariance for Value {
type T = Value;
type Opposite = Use;
}
impl TypeVariance for Use {
type T = Use;
type Opposite = Value;
}
/// Typechecking error.
#[derive(Debug, Clone, thiserror::Error)]
enum Error {
#[error("Unimplemented feature")]
Unimplemented,
#[error("{0}")]
StringError(String),
}
type Result<T> = std::result::Result<T, Error>;
struct Bindings {
next_id: Id,
inner: HashMap<super::Index, Id>,
bounds: HashSet<(Id, Id, Variance)>,
types: HashMap<Id, intern::Index>,
}
impl Bindings {
fn new() -> Self {
Bindings {
next_id: 1,
inner: HashMap::new(),
bounds: HashSet::new(),
types: HashMap::new(),
}
}
fn new_id(&mut self) -> Id {
let id = self.next_id;
self.next_id += 1;
id
}
fn get_or_create(&mut self, idx: super::Index) -> Id {
self.inner.get(&idx).copied().unwrap_or_else(|| {
let id = self.new_id();
self.inner.insert(idx, id);
id
})
}
/// retrieves the type Id for the given ast node.
fn get(&self, idx: super::Index) -> Option<Id> {
self.inner.get(&idx).copied()
}
/// inserts a proper type for `id`.
fn insert_type(&mut self, id: Id, ty: intern::Index) {
self.types.insert(id, ty);
}
inner: HashMap<super::Index, Value>,
}
struct TypeChecker<'a> {
pool: &'a mut intern::InternPool,
bindings: Bindings,
}
// Core
impl TypeChecker<'_> {
pub fn new(pool: &mut intern::InternPool) -> TypeChecker {
TypeChecker {
pool,
bindings: Bindings::new(),
}
TypeChecker { pool }
}
fn var(&mut self) -> (Value, Use) {
@ -140,33 +73,6 @@ impl<'a> AstVisitorTrait<&'a Ast> for TypeChecker<'_> {
const UNIMPL: Self::Error = Error::Unimplemented;
fn visit_interned_type_impl(
&mut self,
ast: &'a Ast,
idx: Index,
intern: intern::Index,
) -> std::result::Result<Self::Value, Self::Error> {
let id = self.bindings.get_or_create(idx);
match self.pool.get_key(intern) {
intern::Key::SimpleType {
ty: intern::SimpleType::ComptimeInt,
} => {
// This is a type variable.
}
intern::Key::SimpleType { .. }
| intern::Key::PointerType { .. }
| intern::Key::ArrayType { .. }
| intern::Key::FunctionType { .. }
| intern::Key::StructType { .. } => {
// This is a real type.
self.bindings.insert_type(id, intern);
}
_ => unreachable!(),
}
Ok(Value(id))
}
fn visit_constant_impl(
&mut self,
ast: &'a Ast,
@ -174,30 +80,8 @@ impl<'a> AstVisitorTrait<&'a Ast> for TypeChecker<'_> {
ty: Index,
value: intern::Index,
) -> std::result::Result<Self::Value, Self::Error> {
// get type from the pool
let AstNode::InternedType { intern } = ast.get_ast_node(ty) else {
panic!(
"Expected an interned type node, got {:?}",
ast.get_ast_node(ty)
);
};
match self.pool.get_key(intern) {
intern::Key::SimpleType {
ty: intern::SimpleType::ComptimeInt,
} => {
// This is a type variable.
}
intern::Key::SimpleType { .. }
| intern::Key::PointerType { .. }
| intern::Key::ArrayType { .. }
| intern::Key::FunctionType { .. }
| intern::Key::StructType { .. } => {
// This is a real type.
}
_ => unreachable!(),
}
// constants may be of type `comptime_int`, which is a special type that
// cannot exist at runtime.
todo!()
}

View file

@ -15,7 +15,7 @@ use crate::{
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[repr(u8)]
pub enum SimpleType {
F32,
F32 = 0,
F64,
Bool,
Void,
@ -28,14 +28,11 @@ pub enum SimpleType {
/// Bottom type: this is the subtype of all types, and it can coerce into a value of any type.
/// Akin to Rust's `!`.
Bottom,
UInt(u16),
SInt(u16),
}
impl From<u32> for SimpleType {
fn from(value: u32) -> Self {
let [discriminant, bits] = *crate::common::u32_as_u16_slice(&value);
match discriminant {
impl From<u8> for SimpleType {
fn from(value: u8) -> Self {
match value {
0 => Self::F32,
1 => Self::F64,
2 => Self::Bool,
@ -43,49 +40,28 @@ impl From<u32> for SimpleType {
4 => Self::USize,
5 => Self::ISize,
6 => Self::ComptimeInt,
7 => Self::Top,
8 => Self::Bottom,
9 => Self::UInt(bits),
10 => Self::SInt(bits),
_ => panic!("{value} is not a simple type"),
}
}
}
impl From<SimpleType> for u32 {
fn from(value: SimpleType) -> Self {
match value {
SimpleType::F32 => crate::common::u32_from_u16_slice(&[0, 0]),
SimpleType::F64 => crate::common::u32_from_u16_slice(&[1, 0]),
SimpleType::Bool => crate::common::u32_from_u16_slice(&[2, 0]),
SimpleType::Void => crate::common::u32_from_u16_slice(&[3, 0]),
SimpleType::USize => crate::common::u32_from_u16_slice(&[4, 0]),
SimpleType::ISize => crate::common::u32_from_u16_slice(&[5, 0]),
SimpleType::ComptimeInt => crate::common::u32_from_u16_slice(&[6, 0]),
SimpleType::Top => crate::common::u32_from_u16_slice(&[7, 0]),
SimpleType::Bottom => crate::common::u32_from_u16_slice(&[8, 0]),
SimpleType::UInt(bits) => crate::common::u32_from_u16_slice(&[9, bits]),
SimpleType::SInt(bits) => crate::common::u32_from_u16_slice(&[10, bits]),
}
}
}
impl Display for SimpleType {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let fmt: std::borrow::Cow<str> = match self {
SimpleType::F32 => "f32".into(),
SimpleType::F64 => "f64".into(),
SimpleType::Bool => "bool".into(),
SimpleType::Void => "void".into(),
SimpleType::USize => "usize".into(),
SimpleType::ISize => "isize".into(),
SimpleType::ComptimeInt => "comptime_int".into(),
SimpleType::Top => "".into(),
SimpleType::Bottom => "".into(),
SimpleType::UInt(bits) => format!("u{bits}").into(),
SimpleType::SInt(bits) => format!("i{bits}").into(),
};
write!(f, "{fmt}",)
write!(
f,
"{}",
match self {
SimpleType::F32 => "f32",
SimpleType::F64 => "f64",
SimpleType::Bool => "bool",
SimpleType::Void => "void",
SimpleType::USize => "usize",
SimpleType::ISize => "isize",
SimpleType::ComptimeInt => "comptime_int",
SimpleType::Top => "",
SimpleType::Bottom => "",
}
)
}
}
@ -102,6 +78,8 @@ pub enum Tag {
F64,
PositiveInt,
NegativeInt,
UIntType,
SIntType,
SimpleType,
PointerType,
ArrayType,
@ -110,9 +88,9 @@ pub enum Tag {
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub(super) struct Item {
pub(super) tag: Tag,
pub(super) index: u32,
struct Item {
tag: Tag,
index: u32,
}
#[derive(Debug, Clone, PartialEq)]
@ -148,6 +126,12 @@ pub enum Key<'a> {
NegativeInt {
bigint: BigInt,
},
UIntType {
bit_width: u16,
},
SIntType {
bit_width: u16,
},
SimpleType {
ty: SimpleType,
},
@ -194,6 +178,8 @@ impl Display for KeyDisplay<'_> {
Key::F64 { bits } => write!(f, "{bits}")?,
Key::PositiveInt { ref bigint } => write!(f, "{bigint}")?,
Key::NegativeInt { ref bigint } => write!(f, "{bigint}")?,
Key::UIntType { bit_width } => write!(f, "u{bit_width}")?,
Key::SIntType { bit_width } => write!(f, "i{bit_width}")?,
Key::SimpleType { ty } => write!(f, "{ty}")?,
Key::PointerType { pointee, flags } => {
write!(f, "*{flags}{}", self.ip.display_key(pointee))?
@ -252,6 +238,8 @@ impl Hash for Key<'_> {
Key::F64 { bits } => ordered_float::OrderedFloat(*bits).hash(state),
Key::PositiveInt { bigint } => bigint.hash(state),
Key::NegativeInt { bigint } => bigint.hash(state),
Key::UIntType { bit_width: bits } => bits.hash(state),
Key::SIntType { bit_width: bits } => bits.hash(state),
Key::SimpleType { ty } => ty.hash(state),
Key::PointerType { pointee, flags } => (pointee, flags).hash(state),
Key::ArrayType {
@ -556,20 +544,20 @@ static_keys!(
ISIZE => Key::SimpleType {ty: SimpleType::ISize,},
VOID => Key::SimpleType {ty: SimpleType::Void,},
COMPTIME_INT => Key::SimpleType {ty: SimpleType::ComptimeInt,},
I0 => Key::SimpleType { ty: SimpleType::SInt(0) },
U0 => Key::SimpleType { ty: SimpleType::UInt(0) },
I1 => Key::SimpleType { ty: SimpleType::SInt(1) },
U1 => Key::SimpleType { ty: SimpleType::UInt(1) },
I8 => Key::SimpleType { ty: SimpleType::SInt(8) },
U8 => Key::SimpleType { ty: SimpleType::UInt(8) },
I16 => Key::SimpleType { ty: SimpleType::SInt(16) },
U16 => Key::SimpleType { ty: SimpleType::UInt(16) },
I32 => Key::SimpleType { ty: SimpleType::SInt(32) },
U32 => Key::SimpleType { ty: SimpleType::UInt(32) },
I64 => Key::SimpleType { ty: SimpleType::SInt(64) },
U64 => Key::SimpleType { ty: SimpleType::UInt(64) },
I128 => Key::SimpleType { ty: SimpleType::SInt(128) },
U128 => Key::SimpleType { ty: SimpleType::UInt(128) },
I1 => Key::SIntType { bit_width: 1 },
U1 => Key::UIntType { bit_width: 1 },
I0 => Key::SIntType { bit_width: 0 },
U0 => Key::UIntType { bit_width: 0 },
I8 => Key::SIntType { bit_width: 8 },
U8 => Key::UIntType { bit_width: 8 },
I16 => Key::SIntType { bit_width: 16 },
U16 => Key::UIntType { bit_width: 16 },
I32 => Key::SIntType { bit_width: 32 },
U32 => Key::UIntType { bit_width: 32 },
I64 => Key::SIntType { bit_width: 64 },
U64 => Key::UIntType { bit_width: 64 },
I128 => Key::SIntType { bit_width: 128 },
U128 => Key::UIntType { bit_width: 128 },
TRUE => Key::TrueValue,
FALSE => Key::FalseValue,
EMPTY_STRING => Key::String { str: "" },
@ -618,51 +606,41 @@ impl InternPool {
ty: SimpleType::ISize,
})
}
// Assumes the type is present in the pool.
fn get_simple_type_unchecked(&self, ty: SimpleType) -> Index {
self.get_assume_present(&Key::SimpleType { ty })
}
pub fn get_u0_type(&self) -> Index {
self.get_simple_type_unchecked(SimpleType::UInt(0))
self.get_assume_present(&Key::UIntType { bit_width: 0 })
}
pub fn get_i0_type(&self) -> Index {
self.get_simple_type_unchecked(SimpleType::SInt(0))
self.get_assume_present(&Key::SIntType { bit_width: 0 })
}
pub fn get_u1_type(&self) -> Index {
self.get_simple_type_unchecked(SimpleType::UInt(1))
self.get_assume_present(&Key::UIntType { bit_width: 1 })
}
pub fn get_i1_type(&self) -> Index {
self.get_simple_type_unchecked(SimpleType::SInt(1))
self.get_assume_present(&Key::SIntType { bit_width: 1 })
}
pub fn get_u8_type(&self) -> Index {
self.get_simple_type_unchecked(SimpleType::UInt(8))
self.get_assume_present(&Key::UIntType { bit_width: 8 })
}
pub fn get_i8_type(&self) -> Index {
self.get_simple_type_unchecked(SimpleType::SInt(8))
self.get_assume_present(&Key::SIntType { bit_width: 8 })
}
pub fn get_u16_type(&self) -> Index {
self.get_simple_type_unchecked(SimpleType::UInt(16))
self.get_assume_present(&Key::UIntType { bit_width: 16 })
}
pub fn get_i16_type(&self) -> Index {
self.get_simple_type_unchecked(SimpleType::SInt(16))
self.get_assume_present(&Key::SIntType { bit_width: 16 })
}
pub fn get_u32_type(&self) -> Index {
self.get_simple_type_unchecked(SimpleType::UInt(32))
self.get_assume_present(&Key::UIntType { bit_width: 32 })
}
pub fn get_i32_type(&self) -> Index {
self.get_simple_type_unchecked(SimpleType::SInt(32))
self.get_assume_present(&Key::SIntType { bit_width: 32 })
}
pub fn get_u64_type(&self) -> Index {
self.get_simple_type_unchecked(SimpleType::UInt(64))
self.get_assume_present(&Key::UIntType { bit_width: 64 })
}
pub fn get_i64_type(&self) -> Index {
self.get_simple_type_unchecked(SimpleType::SInt(64))
}
pub fn get_u128_type(&self) -> Index {
self.get_simple_type_unchecked(SimpleType::UInt(128))
}
pub fn get_i128_type(&self) -> Index {
self.get_simple_type_unchecked(SimpleType::SInt(128))
self.get_assume_present(&Key::SIntType { bit_width: 64 })
}
pub fn get_top_type(&self) -> Index {
@ -722,9 +700,8 @@ impl InternPool {
| Key::SimpleType {
ty: SimpleType::ISize,
}
| Key::SimpleType {
ty: SimpleType::SInt(_) | SimpleType::UInt(_),
},
| Key::SIntType { .. }
| Key::UIntType { .. },
) => Some(rhs),
(
Key::SimpleType {
@ -739,9 +716,8 @@ impl InternPool {
| Key::SimpleType {
ty: SimpleType::ISize,
}
| Key::SimpleType {
ty: SimpleType::SInt(_) | SimpleType::UInt(_),
},
| Key::SIntType { .. }
| Key::UIntType { .. },
Key::SimpleType {
ty: SimpleType::ComptimeInt,
},
@ -769,6 +745,15 @@ impl InternPool {
pub fn to_mir_type(&self, index: Index, _ptr_size: TypeInfo) -> crate::mir::Type {
use crate::mir::Type;
match self.get_key(index) {
Key::UIntType { bit_width: bits } => {
let bits = bits as u32;
Type::from_bitsize_int(bits)
}
Key::SIntType { bit_width: bits } => {
let bits = bits as u32;
Type::from_bitsize_int(bits)
}
Key::SimpleType { ty } => match ty {
SimpleType::F32 => Type::SinglePrecision,
SimpleType::F64 => Type::DoublePrecision,
@ -777,9 +762,6 @@ impl InternPool {
todo!("void can't be turned into a mir type")
}
SimpleType::ISize | SimpleType::USize => Type::QWord,
SimpleType::UInt(bits) | SimpleType::SInt(bits) => {
Type::from_bitsize_int(bits as u32)
}
SimpleType::Top | SimpleType::Bottom | SimpleType::ComptimeInt => {
panic!("{ty} can't be turned into a mir type")
}
@ -800,9 +782,11 @@ impl InternPool {
pub fn is_type_signed(&self, index: Index, _ptr_size: TypeInfo) -> bool {
match self.get_key(index) {
Key::UIntType { .. } => false,
Key::SIntType { .. } => true,
Key::SimpleType { ty } => match ty {
SimpleType::USize | SimpleType::UInt(_) => false,
SimpleType::ISize | SimpleType::SInt(_) => true,
SimpleType::USize => false,
SimpleType::ISize => true,
_ => false,
},
Key::PointerType { .. } => false,
@ -815,17 +799,23 @@ impl InternPool {
pub fn size_of_type(&self, index: Index, ptr_size: TypeInfo) -> TypeInfo {
match self.get_key(index) {
Key::SimpleType { ty } => match ty {
SimpleType::SInt(bits) => TypeInfo {
bitsize: bits as u32,
bitalign: (bits as u32).next_multiple_of(8).next_power_of_two(),
signed: true,
},
SimpleType::UInt(bits) => TypeInfo {
bitsize: bits as u32,
bitalign: (bits as u32).next_multiple_of(8).next_power_of_two(),
Key::UIntType { bit_width: bits } => {
let bits = bits as u32;
TypeInfo {
bitsize: bits,
bitalign: bits.next_multiple_of(8).next_power_of_two(),
signed: false,
},
}
}
Key::SIntType { bit_width: bits } => {
let bits = bits as u32;
TypeInfo {
bitsize: bits,
bitalign: bits.next_multiple_of(8).next_power_of_two(),
signed: true,
}
}
Key::SimpleType { ty } => match ty {
SimpleType::F32 => TypeInfo {
bitsize: 32,
bitalign: 32,
@ -899,13 +889,9 @@ impl InternPool {
crate::ast::Type::ComptimeNumber => self.get_comptime_int_type(),
crate::ast::Type::Integer(i) => self.get_or_insert({
if i.signed {
Key::SimpleType {
ty: SimpleType::SInt(i.bits),
}
Key::SIntType { bit_width: i.bits }
} else {
Key::SimpleType {
ty: SimpleType::UInt(i.bits),
}
Key::UIntType { bit_width: i.bits }
}
}),
crate::ast::Type::Floating(crate::ast::FloatingType::Binary32) => self.get_f32_type(),
@ -944,13 +930,9 @@ impl InternPool {
crate::ast::Type::ComptimeNumber => self.get_comptime_int_type(),
crate::ast::Type::Integer(i) => self.get_assume_present(&{
if i.signed {
Key::SimpleType {
ty: SimpleType::SInt(i.bits),
}
Key::SIntType { bit_width: i.bits }
} else {
Key::SimpleType {
ty: SimpleType::UInt(i.bits),
}
Key::UIntType { bit_width: i.bits }
}
}),
crate::ast::Type::Floating(crate::ast::FloatingType::Binary32) => self.get_f32_type(),
@ -986,11 +968,11 @@ impl InternPool {
pub fn as_ast1_type(&self, pointer_bits: u16, index: Index) -> crate::ast::Type {
use crate::ast::Type;
match self.get_key(index) {
Key::UIntType { bit_width: bits } => Type::Integer(IntegralType::new(false, bits)),
Key::SIntType { bit_width: bits } => Type::Integer(IntegralType::new(true, bits)),
Key::SimpleType { ty } => match ty {
SimpleType::F32 => Type::Floating(crate::ast::FloatingType::Binary32),
SimpleType::F64 => Type::Floating(crate::ast::FloatingType::Binary64),
SimpleType::SInt(bits) => Type::Integer(IntegralType::new(true, bits)),
SimpleType::UInt(bits) => Type::Integer(IntegralType::new(false, bits)),
SimpleType::Bool => Type::Bool,
SimpleType::Void => Type::Void,
SimpleType::USize => Type::Integer(IntegralType::new(false, pointer_bits)),
@ -1116,7 +1098,9 @@ impl InternPool {
self.create_item(Tag::NegativeInt, i)
}
Key::SimpleType { ty } => self.create_item(Tag::SimpleType, ty.into()),
Key::UIntType { bit_width: bits } => self.create_item(Tag::UIntType, bits as u32),
Key::SIntType { bit_width: bits } => self.create_item(Tag::SIntType, bits as u32),
Key::SimpleType { ty } => self.create_item(Tag::SimpleType, ty as u8 as u32),
Key::PointerType { pointee, flags } => {
let flags = flags.pack();
let i = self.extend_words([pointee.index() as u32, flags as u32]);
@ -1246,11 +1230,17 @@ impl InternPool {
let bigint = BigInt::from_biguint(Sign::Plus, data);
Key::PositiveInt { bigint }
}
Tag::SIntType => Key::SIntType {
bit_width: item.index as u16,
},
Tag::UIntType => Key::UIntType {
bit_width: item.index as u16,
},
Tag::SimpleType => {
let ty = item.idx() as u32;
let ty = item.idx() as u8;
Key::SimpleType {
ty: SimpleType::from(ty),
ty: unsafe { core::mem::transmute::<u8, SimpleType>(ty) },
}
}
Tag::PointerType => {
@ -1347,12 +1337,8 @@ impl InternPool {
pub fn get_int_type(&mut self, signed: bool, bits: u16) -> Index {
let key = match signed {
true => Key::SimpleType {
ty: SimpleType::SInt(bits),
},
false => Key::SimpleType {
ty: SimpleType::UInt(bits),
},
true => Key::SIntType { bit_width: bits },
false => Key::UIntType { bit_width: bits },
};
self.get_or_insert(key)
@ -1549,7 +1535,7 @@ impl InternPool {
((index.index() as u32) < self.len()).then_some(index)
}
pub(super) fn get_item(&self, index: Index) -> Option<Item> {
fn get_item(&self, index: Index) -> Option<Item> {
self.check_bounds(index).map(|i| Item {
tag: self.tags[i.index()],
index: self.indices[i.index()],
@ -1568,6 +1554,8 @@ impl InternPool {
| Key::ArrayType { .. }
| Key::PointerType { .. }
| Key::SimpleType { .. }
| Key::SIntType { .. }
| Key::UIntType { .. }
| Key::StructType { .. }
)
}

View file

@ -1,34 +0,0 @@
use super::*;
use core::hash::Hash;
use std::hash::Hasher;
// Types implementing this trait can be stored in the internpool.
trait KeyTrait: Hash + Eq {
const TAG: Tag;
fn serialise(self, pool: &mut InternPool);
fn deserialise(index: Index, pool: &mut InternPool) -> Self;
}
impl KeyTrait for String {
const TAG: Tag = Tag::String;
fn serialise(self, pool: &mut InternPool) {
todo!()
}
fn deserialise(index: Index, pool: &mut InternPool) -> Self {
// let mut hasher = std::hash::DefaultHasher::new();
// core::any::TypeId::of::<Self>().hash(&mut hasher);
// let tag = hasher.finish() as u32;
let item = pool.get_item(index).unwrap();
assert_eq!(item.tag, Self::TAG);
let start = pool.words[item.idx()] as usize;
let len = pool.words[item.idx() + 1] as usize;
let str = unsafe {
let bytes = &pool.strings[start..start + len];
std::str::from_utf8_unchecked(bytes)
};
str.to_owned()
}
}

View file

@ -2134,6 +2134,36 @@ where
let ty_key = ip.get_key(ty);
let signed = ip.is_type_signed(ty, AMD64_POINTER_TYPE_INFO);
match ty_key {
intern::Key::SIntType { bit_width: bits } | intern::Key::UIntType { bit_width: bits } => {
let ty = IntegralType::new(signed, bits);
match ip.get_key(val) {
intern::Key::SIntSmall { bits } => ComptimeNumber::Integral(ComptimeInt::Native {
bits: bits as _,
ty,
}),
intern::Key::UIntSmall { bits } => ComptimeNumber::Integral(ComptimeInt::Native {
bits: bits as _,
ty,
}),
intern::Key::SInt64 { bits } => ComptimeNumber::Integral(ComptimeInt::Native {
bits: bits as _,
ty,
}),
intern::Key::UInt64 { bits } => ComptimeNumber::Integral(ComptimeInt::Native {
bits: bits as _,
ty,
}),
intern::Key::PositiveInt { bigint } => {
ComptimeNumber::Integral(ComptimeInt::BigInt { bits: bigint, ty })
}
intern::Key::NegativeInt { bigint } => {
ComptimeNumber::Integral(ComptimeInt::BigInt { bits: bigint, ty })
}
_ => {
unreachable!()
}
}
}
intern::Key::SimpleType { ty } => match ty {
intern::SimpleType::F32 => match ip.get_key(val) {
intern::Key::F32 { bits } => {
@ -2226,40 +2256,6 @@ where
intern::SimpleType::Top | intern::SimpleType::Bottom => {
unreachable!()
}
intern::SimpleType::UInt(bits) | intern::SimpleType::SInt(bits) => {
let ty = IntegralType::new(signed, bits);
match ip.get_key(val) {
intern::Key::SIntSmall { bits } => {
ComptimeNumber::Integral(ComptimeInt::Native {
bits: bits as _,
ty,
})
}
intern::Key::UIntSmall { bits } => {
ComptimeNumber::Integral(ComptimeInt::Native {
bits: bits as _,
ty,
})
}
intern::Key::SInt64 { bits } => ComptimeNumber::Integral(ComptimeInt::Native {
bits: bits as _,
ty,
}),
intern::Key::UInt64 { bits } => ComptimeNumber::Integral(ComptimeInt::Native {
bits: bits as _,
ty,
}),
intern::Key::PositiveInt { bigint } => {
ComptimeNumber::Integral(ComptimeInt::BigInt { bits: bigint, ty })
}
intern::Key::NegativeInt { bigint } => {
ComptimeNumber::Integral(ComptimeInt::BigInt { bits: bigint, ty })
}
_ => {
unreachable!()
}
}
}
},
_ => {
unreachable!()

View file

@ -72,7 +72,9 @@ pub fn is_oct_digit(ch: char) -> bool {
}
pub fn is_hex_digit(ch: char) -> bool {
('0'..='9').contains(&ch) || ('a'..='f').contains(&ch) || ('A'..='F').contains(&ch)
('0'..='9').contains(&ch)
|| ('a'..='f').contains(&ch)
|| ('A'..='F').contains(&ch)
}
/// Trait for only yielding the next item in the Iterator if it tests true for some predicate
@ -174,19 +176,3 @@ pub fn from_lo_hi_dwords(lo: u32, hi: u32) -> u64 {
pub fn into_lo_hi_dwords(qword: u64) -> (u32, u32) {
(qword as u32, (qword >> 32) as u32)
}
pub fn u32_as_u16_slice(value: &u32) -> &[u16; 2] {
// SAFETY: This is safe because u32 is guaranteed to be 4 bytes and
// we are creating a slice of 2 u16s which is also 4 bytes.
unsafe { &*(value as *const u32 as *const [u16; 2]) }
}
// we can't transform any &[u16; 2] into a &u32 because of alignment guarantees
pub fn u32_from_u16_slice(slice: &[u16; 2]) -> u32 {
let mut out = 0u32;
unsafe {
core::ptr::copy_nonoverlapping(slice.as_ptr(), &raw mut out as *mut u16, 2);
}
out
}