initial commit

This commit is contained in:
Janis 2024-08-06 20:57:19 +02:00
commit e8934b8ccc
8 changed files with 951 additions and 0 deletions

2
.gitignore vendored Normal file
View file

@ -0,0 +1,2 @@
/target
/Cargo.lock

10
Cargo.toml Normal file
View file

@ -0,0 +1,10 @@
[package]
name = "compiler"
version = "0.1.0"
edition = "2021"
[dependencies]
itertools = "0.13.0"
log = "0.4.22"
thiserror = "1.0.63"
unicode-xid = "0.2.4"

95
grammar.bnf Normal file
View file

@ -0,0 +1,95 @@
# cool language called sea:
<id-start> ::= ...
<id-cont> ::= ...
<digit> ::= ...
<digits> ::= ...
<letter> ::= ...
<letter_> ::= <letter> | '_'
<digitletter_> ::= <digit> | <letter> | '_'
<ident> ::= <id-start>
| <ident> <id-cont>
<program> ::= <definition>
<definition> ::= <var-decl> | <fn-decl>
<fn-decl> ::= fn <ident> '(' <parameter-list> ,? ')' (-> <type-name>)? <block>
<parameter-list> ::= <parameter>
| <parameter-list> , <parameter>
<parameter> ::= <ident> : <type-name>
<block> ::= <statement>*
| <block> <expr>
<statement> ::= <return-statement>
| <expr-statement>
| <assignment-statement>
| <var-decl> ';'
<return-statement> ::= return <expr>? ';'
<expr-statement> ::= <expr> ';'
<assignment-statement> ::= <ident> <assignment-op> <expr> ';'
<assignment-op> ::= |= | &= | ^= | /= | *= | %= | <<= | >>= | += | -= | =
<expr> ::= <or-expr>
<or-expr> ::= <and-expr>
| <or-expr> || <and-expr>
<and-expr> ::= <bitor-expr>
| <and-expr> && <bitor-expr>
<bitor-expr> ::= <bitxor-expr>
| <bitor-expr> '|' <bitxor-expr>
<bitxor-expr> ::= <bitand-expr>
| <bitxor-expr> ^ <bitand-expr>
<bitand-expr> ::= <equality-expr>
| <bitand-expr> & <equality-expr>
<equality-expr> ::= <relational-expr>
| <equality-expr> (!= | ==) <relational-expr>
<relational-expr> ::= <shift-expr>
| <relational-expr> (< | > | <= | >=) <shift-expr>
<shift-expr> ::= <add-expr>
| <shift-expr> (<< | >>) <add-expr>
<add-expr> ::= <mul-expr>
| <add-expr> (+ | -) <mul-expr>
<mul-expr> ::= <prefix-expr>
| <mul-expr> (* | / | %) <prefix-expr>
<prefix-expr> ::= <prefix-op> <as-expr>
<prefix-op> ::= ! - + & *
<as-expr> ::= <primary-expr> as <type-name>
<primary-expr> ::= <constant>
| <literal>
| <ident>
| '(' <expr> ')'
<var-decl> ::= (let | var) <ident> (':' <type-name>)? ( = <expr> )?
<type-name> ::= <ident>
| <primitive-type>
| <pointer>
<pointer> ::= '*' 'const'? <type-name>
<primitive-type> ::= bool
| <integral-type>
| <floating-type>
| void
<integral-type> ::= ('u' | 'i') <digits>+
<floating-type> ::= 'f'('32' | '64')
<constant> ::= <integral-constant>
| <floating-constant>
<integral-constant> ::= <dec-digits><integral-type>?
| '0x' <hex-digits> <integral-type>?
| '0b' <bin-digits> <integral-type>?
| '0o' <oct-digits> <integral-type>?
<floating-constant> ::= <dec-digits> <floating-type>?
| '.' <dec-digits> <exp-part>? <floating-type>?
| <dec-digits> '.' <dec-digits>? <exp-part>? <floating-type>?
<exp-part> ::= ('e' | 'E') ('-' | '+')? <dec-digits>

1
rust-toolchain Normal file
View file

@ -0,0 +1 @@
nightly

160
src/common.rs Normal file
View file

@ -0,0 +1,160 @@
#![allow(unused)]
/// True if `c` is considered a whitespace according to Rust language definition.
/// See [Rust language reference](https://doc.rust-lang.org/reference/whitespace.html)
/// for definitions of these classes.
pub fn is_whitespace(c: char) -> bool {
// This is Pattern_White_Space.
//
// Note that this set is stable (ie, it doesn't change with different
// Unicode versions), so it's ok to just hard-code the values.
matches!(
c,
// Usual ASCII suspects
'\u{0009}' // \t
| '\u{000A}' // \n
| '\u{000B}' // vertical tab
| '\u{000C}' // form feed
| '\u{000D}' // \r
| '\u{0020}' // space
// NEXT LINE from latin1
| '\u{0085}'
// Bidi markers
| '\u{200E}' // LEFT-TO-RIGHT MARK
| '\u{200F}' // RIGHT-TO-LEFT MARK
// Dedicated whitespace characters from Unicode
| '\u{2028}' // LINE SEPARATOR
| '\u{2029}' // PARAGRAPH SEPARATOR
)
}
/// True if `c` is valid as a first character of an identifier.
/// See [Rust language reference](https://doc.rust-lang.org/reference/identifiers.html) for
/// a formal definition of valid identifier name.
pub fn is_id_start(c: char) -> bool {
// This is XID_Start OR '_' (which formally is not a XID_Start).
c == '_' || unicode_xid::UnicodeXID::is_xid_start(c)
}
/// True if `c` is valid as a non-first character of an identifier.
/// See [Rust language reference](https://doc.rust-lang.org/reference/identifiers.html) for
/// a formal definition of valid identifier name.
pub fn is_id_continue(c: char) -> bool {
unicode_xid::UnicodeXID::is_xid_continue(c)
}
/// The passed string is lexically an identifier.
pub fn is_ident(string: &str) -> bool {
let mut chars = string.chars();
if let Some(start) = chars.next() {
is_id_start(start) && chars.all(is_id_continue)
} else {
false
}
}
pub fn is_digit(ch: char) -> bool {
('0'..='9').contains(&ch)
}
pub fn is_bin_digit(ch: char) -> bool {
ch == '0' || ch == '1'
}
pub fn is_nonzero_digit(ch: char) -> bool {
('1'..='9').contains(&ch)
}
pub fn is_oct_digit(ch: char) -> bool {
('0'..='7').contains(&ch)
}
pub fn is_hex_digit(ch: char) -> bool {
('0'..='9').contains(&ch) || ('a'..='f').contains(&ch) || ('A'..='F').contains(&ch)
}
/// Trait for only yielding the next item in the Iterator if it tests true for some predicate
pub trait NextIf<I>: Iterator<Item = I> + Clone {
/// Yield next item if `pred` returns `true`.
/// If `pred` returns `false` the Iterator is not advanced.
#[must_use]
fn next_if<F>(&mut self, pred: F) -> Option<I>
where
F: FnOnce(&Self::Item) -> bool,
{
let old = self.clone();
match self.next() {
Some(item) => {
if pred(&item) {
Some(item)
} else {
*self = old;
None
}
}
None => None,
}
}
/// Yield next item if `pred` returns `Some(T)`.
/// If `pred` returns `None` the Iterator is not advanced.
#[must_use]
fn next_if_map<F, T>(&mut self, pred: F) -> Option<T>
where
F: FnOnce(Self::Item) -> Option<T>,
{
let old = self.clone();
match self.next() {
Some(item) => match pred(item) {
None => {
*self = old;
None
}
some => some,
},
None => None,
}
}
}
impl<I, T> NextIf<I> for T where T: Iterator<Item = I> + Clone {}
pub trait FallibleParse<I>: Iterator<Item = I> + Clone {
/// consumes items from `self` if and only if `map` yields `Some`.
#[must_use]
fn try_parse<F, U>(&mut self, map: F) -> Option<U>
where
F: FnOnce(&mut Self) -> Option<U>,
{
// clone iterator and keep around
let old = self.clone();
match map(self) {
Some(result) => Some(result),
None => {
// the map function failed, restore iterator and yield None.
*self = old;
None
}
}
}
#[must_use]
fn try_parse_result<F, U, E>(&mut self, map: F) -> Result<U, E>
where
F: FnOnce(&mut Self) -> Result<U, E>,
{
// clone iterator and keep around
let old = self.clone();
match map(self) {
Ok(result) => Ok(result),
Err(e) => {
// the map function failed, restore iterator and yield None.
*self = old;
Err(e)
}
}
}
}
impl<I, T> FallibleParse<I> for T where T: Iterator<Item = I> + Clone {}

442
src/lexer.rs Normal file
View file

@ -0,0 +1,442 @@
use crate::tokens::Token;
use crate::tokens::TokenPos;
use itertools::Itertools;
use crate::common::FallibleParse;
use crate::common::NextIf;
#[derive(Debug, thiserror::Error)]
pub enum LexerError {
#[error("{0}")]
StringError(String),
#[error("Exp part of floating constant had no digits.")]
FloatingConstantExpPartNoDigit,
#[error("Dummy Message.")]
NumericalConstantDigitLeadingUnderscore,
#[error("Dummy Message.")]
NumericalConstantDigitNoDigit,
#[error("Dummy Message.")]
IntegralTypeExpectedDigit,
#[error("Dummy Message.")]
FloatingConstantInvalidTrailingType,
#[error("Dummy Message.")]
InvalidToken,
#[error("Dummy Message.")]
ExpectedIdStartForIdentifier,
}
pub type LexerResult<T> = core::result::Result<T, LexerError>;
#[derive(Debug, Clone)]
pub struct Chars<'a> {
bytes: &'a [u8],
offset: usize,
}
impl<'a> Chars<'a> {
pub fn as_str(&self) -> &str {
unsafe { core::str::from_utf8_unchecked(&self.bytes[self.offset..]) }
}
pub fn is_eof(&self) -> bool {
self.offset >= self.bytes.len()
}
pub fn peek(&self) -> Option<char> {
self.clone().next()
}
pub fn position(&self) -> u32 {
self.offset() as u32
}
pub fn offset(&self) -> usize {
self.offset
}
pub fn get_range(&self, start: u32, end: u32) -> &str {
unsafe { core::str::from_utf8_unchecked(&self.bytes[start as usize..end as usize]) }
}
fn next_char(&mut self) -> Option<char> {
let ch = self.as_str().chars().next()?;
self.offset += ch.len_utf8();
Some(ch)
}
}
impl<'a> Iterator for Chars<'a> {
type Item = char;
fn next(&mut self) -> Option<Self::Item> {
self.next_char()
}
}
#[derive(Debug, Clone)]
pub struct Tokenizer<'a> {
source: Chars<'a>,
tokens: Vec<TokenPos>,
}
macro_rules! next_or_eof {
($expr:expr) => {
match $expr.next() {
Some(c) => c,
None => {
return Ok(Token::Eof);
}
}
};
(?$expr:expr) => {
match $expr.peek() {
Some(c) => c,
None => {
return Ok(Token::Eof);
}
}
};
}
macro_rules! residual {
(ok: $expr:expr) => {
match $expr {
Ok(t) => t,
Err(e) => {
return Err(e);
}
}
};
(none: $expr:expr) => {
match $expr {
Ok(Some(t)) => {
return Ok(Some(t));
}
Ok(val) => val,
Err(e) => {
return Err(e);
}
}
};
(flatten: none: $expr:expr) => {
match $expr {
Ok(Some(t)) => {
return Ok(t);
}
Ok(val) => val,
Err(e) => {
return Err(e);
}
}
};
(some: $expr:expr) => {
match $expr {
Ok(Some(t)) => t,
Ok(None) => {
return Ok(None);
}
Err(e) => {
return Err(e);
}
}
};
}
impl<'a> Tokenizer<'a> {
fn push_token(&mut self, token: Token, start: u32, end: u32) -> LexerResult<()> {
self.tokens.push(TokenPos::new(token, start, end));
Ok(())
}
pub fn next_token(&mut self) -> LexerResult<()> {
self.source
.take_while_ref(|&c| crate::common::is_whitespace(c))
.count();
let start = self.source.position();
let token = self.source.try_parse_result(|source| {
let a = try_parse_integral_type(source).map(|o| o.map(|_| Token::IntegralType));
residual!(none: a);
let mut peeking = source.clone();
match peeking.next() {
Some('0'..='9') => {
return Ok(Some(parse_constant(source)?));
}
Some('.') if peeking.next().map(|c| ['b', 'x', 'o'].contains(&c)) == Some(true) => {
return Ok(Some(parse_constant(source)?));
}
_ => {}
}
Ok(None)
});
if let Some(token) = token? {
return self.push_token(token, start, self.source.position());
}
// lexical tokens
let token = crate::tokens::LexemeParser::parse(self.source.clone());
if let Some(token) = token {
_ = self.source.advance_by(token.lexeme_len());
match token {
Token::SlashSlash | Token::SlashSlashSlash => {
_ = self.push_token(token, start, self.source.position());
let start = self.source.position();
loop {
// advance until either EOF or newline
let Some(ch) = self.source.next() else {
break;
};
if ch == '\n' {
break;
}
}
let end = self.source.position() - 1;
return self.push_token(
if token == Token::SlashSlash {
Token::Comment
} else {
Token::DocComment
},
start,
end,
);
}
Token::SlashStar | Token::SlashStarStar => {
let start = self.source.position();
let mut end = self.source.position();
let mut last = self.source.next();
loop {
// break out of loop if EOF
let Some(l) = last.replace(match self.source.next() {
Some(ch) => ch,
None => {
break;
}
}) else {
break;
};
// break out of loop if end of comment
if (l, last.unwrap()) == ('*', '/') {
break;
}
end = self.source.position() - 1;
}
return self.push_token(
if token == Token::SlashStar {
Token::Comment
} else {
Token::DocComment
},
start,
end,
);
}
_ => {}
}
if token.maybe_ident() {
if self
.source
.take_while_ref(|&c| crate::common::is_id_continue(c))
.count()
.gt(&0)
{
return self.push_token(Token::Ident, start, self.source.position());
}
}
return self.push_token(token, start, self.source.position());
}
self.source
.next_if(|&c| crate::common::is_id_start(c))
.ok_or(LexerError::ExpectedIdStartForIdentifier)?;
self.source
.take_while_ref(|&c| crate::common::is_id_continue(c))
.count();
return self.push_token(Token::Ident, start, self.source.position());
}
}
/// IntegralType <-
/// ( 'u' | 'i' ) DIGITS+
fn try_parse_integral_type(source: &mut Chars) -> LexerResult<Option<()>> {
if !source.next_if(|&c| c == 'u' || c == 'i').is_some() {
return Ok(None);
}
if source
.take_while_ref(|&c| crate::common::is_digit(c))
.count()
<= 0
{
return Err(LexerError::IntegralTypeExpectedDigit);
};
Ok(Some(()))
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
enum Radix {
Hex,
Bin,
Dec,
Oct,
}
impl Radix {
/// must be called with one of `['b','x','d','o']`
unsafe fn from_char_unchecked(c: char) -> Self {
match c.to_ascii_lowercase() {
'o' => Self::Oct,
'b' => Self::Oct,
'x' => Self::Oct,
'd' => Self::Oct,
_ => unreachable!(),
}
}
fn from_char(c: char) -> Option<Self> {
match c.to_ascii_lowercase() {
'o' => Some(Self::Oct),
'b' => Some(Self::Oct),
'x' => Some(Self::Oct),
'd' => Some(Self::Oct),
_ => None,
}
}
fn to_token(self) -> Token {
match self {
Radix::Hex => Token::IntegerHexConstant,
Radix::Bin => Token::IntegerBinConstant,
Radix::Oct => Token::IntegerOctConstant,
Radix::Dec => Token::IntegerConstant,
}
}
fn is_digit(self) -> fn(char) -> bool {
match self {
Radix::Hex => crate::common::is_hex_digit,
Radix::Bin => crate::common::is_bin_digit,
Radix::Oct => crate::common::is_oct_digit,
Radix::Dec => crate::common::is_digit,
}
}
}
/// where DIGIT is defined by radix:
/// DIGITS <-
/// if allow_leading_underscore: `_`* DIGIT (DIGIT|`_`)*
/// else: DIGIT (DIGIT|`_`)*
fn parse_digit_part(
source: &mut Chars,
allow_leading_underscore: bool,
radix: Radix,
) -> LexerResult<()> {
let radix = radix.is_digit();
if allow_leading_underscore {
let _underscore = source.take_while_ref(|&c| c == '_').count();
}
let _need_digit = source.next_if(|&c| radix(c)).ok_or_else(|| {
if source.peek() == Some('_') {
LexerError::NumericalConstantDigitLeadingUnderscore
} else {
LexerError::NumericalConstantDigitNoDigit
}
})?;
let _rest = source.take_while_ref(|&c| radix(c) || c == '_').count();
Ok(())
}
/// returns `Err(E)` if it failed to parse.
/// returns `Ok(None)` if no exp part was found.
/// returns `Ok(Some(()))` if an exp part was found and parsed.
///
/// EXP_PART <-
/// (`e`|`E`) (`-`|`+`)? DEC_DIGITS
fn try_parse_exp_part(source: &mut Chars) -> LexerResult<Option<()>> {
if source.next_if(|&c| c.to_ascii_lowercase() == 'e').is_some() {
let _sign = source.next_if(|&c| c == '-' || c == '+');
if source
.take_while_ref(|&c| crate::common::is_digit(c))
.count()
.lt(&1)
{
// need digits following exp notation
Err(LexerError::FloatingConstantExpPartNoDigit)
} else {
Ok(Some(()))
}
} else {
Ok(None)
}
}
/// CONSTANT <-
/// DEC_DIGITS IntegralType?
/// `0x` HEX_DIGITS IntegralType?
/// `0b` BIN_DIGITS IntegralType?
/// `0o` OCT_DIGITS IntegralType?
/// DEC_DIGITS FloatingType?
/// `.` DEC_DIGITS EXP_PART? FloatingType?
/// DEC_DIGITS `.` DEC_DIGITS? EXP_PART? FloatingType?
fn parse_constant(source: &mut Chars) -> LexerResult<Token> {
let zero = source.next_if(|&c| c == '0').is_some();
let radix = zero
.then(|| source.next_if_map(|c| Radix::from_char(c)))
.flatten();
if let Some(radix) = radix {
parse_digit_part(source, false, radix)?;
if source.peek().map(|c| c == 'u' || c == 'i') == Some(true) {
try_parse_integral_type(source)?;
}
return Ok(radix.to_token());
}
// if zero: `_`* DIGIT (DIGIT|`_`)*
// else: DIGIT (DIGIT|`_`)*
let _digits = parse_digit_part(source, false, Radix::Dec)?;
if let Ok(_) = source.try_parse_result(|source| try_parse_integral_type(source)) {
return Ok(Token::IntegerConstant);
}
let dot = source.next_if(|&c| c == '.').is_some();
if dot {
parse_digit_part(source, false, Radix::Dec)?;
}
// parse exp notation
let exp = try_parse_exp_part(source)?.is_some();
// trailing FloatingType?
let floating = if source.next_if(|&c| c == 'f').is_some() {
let digits = source.next_tuple::<(char, char)>();
if !(digits == Some(('6', '4')) || digits == Some(('3', '2'))) {
// need either f64 or f32 here!
return Err(LexerError::FloatingConstantInvalidTrailingType);
}
true
} else {
false
};
let token = match (dot, exp, floating) {
(false, false, false) => Token::IntegerConstant,
(true, false, _) => Token::DotFloatingConstant,
(true, true, _) => Token::DotFloatingExpConstant,
(false, true, _) => Token::FloatingExpConstant,
(false, _, _) => Token::FloatingConstant,
};
Ok(token)
}

5
src/lib.rs Normal file
View file

@ -0,0 +1,5 @@
#![feature(extract_if, iter_advance_by)]
mod common;
mod lexer;
mod tokens;

236
src/tokens.rs Normal file
View file

@ -0,0 +1,236 @@
macro_rules! tokens {
($vis:vis $ty_name:ident:
{
$($name2:ident),*
},
{
$($name:ident => $lexeme:literal),*
}) => {
#[allow(dead_code)]
#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)]
$vis enum $ty_name {
$($name,
)*
$($name2,)*
}
impl std::fmt::Display for $ty_name {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
$(Self::$name => write!(f, "{}", $lexeme),)*
$(Self::$name2 => write!(f, "<{}>", stringify!($name2))),*
}
}
}
#[allow(dead_code)]
impl $ty_name {
$vis fn lexeme(&self) -> Option<&'static str> {
match self {
$(Self::$name => Some($lexeme),)*
$(Self::$name2 => None),*
}
}
/// returns the number of chars in this lexeme
$vis fn lexeme_len(&self) -> usize {
self.lexeme().map(|lexeme|lexeme.chars().count()).unwrap_or(0)
}
$vis fn maybe_ident(&self) -> bool {
self.lexeme().map(|lexeme| crate::common::is_ident(lexeme)).unwrap_or(false)
}
$vis fn lexemes() -> &'static [(Self, &'static str)] {
&[
$((Self::$name, $lexeme)),*
]
}
}
};
}
tokens!(pub Token: {
Eof,
// Marker Token for any Comment
Comment,
DocComment,
// Marker Token for any pre-processing directive
CharConstant,
IntegerConstant,
IntegerHexConstant,
IntegerBinConstant,
IntegerOctConstant,
FloatingConstant,
FloatingExpConstant,
DotFloatingConstant,
DotFloatingExpConstant,
StringConstant,
IntegralType,
Ident
},
// Lexical Tokens:
{
SlashSlash => "//",
SlashStar => "/*",
SlashStarStar => "/**",
StarSlash => "*/",
SlashSlashSlash => "///",
// Punctuation:
OpenParens => "(",
CloseParens => ")",
OpenBrace => "{",
CloseBrace => "}",
OpenSquareBracket => "[",
CloseSquareBracket => "]",
Semi => ";",
Comma => ",",
Elipsis3 => "...",
Elipsis2 => "..",
Colon => ":",
Equal => "=",
// Keywords:
Void => "void",
Bool => "bool",
F32 => "f32",
F64 => "f64",
Const => "const",
Fn => "fn",
Let => "let",
Var => "var",
If => "if",
As => "as",
Else => "else",
Return => "return",
// Operators
Dot => ".",
MinusGreater => "->",
Bang => "!",
Tilde => "~",
Plus => "+",
Minus => "-",
Star => "*",
Slash => "/",
Percent => "%",
Less => "<",
Greater => ">",
LessEqual => "<=",
GreaterEqual => ">=",
EqualEqual => "==",
BangEqual => "!=",
PipePipe => "||",
AmpersandAmpersand => "&&",
Ampersand => "&",
Caret => "^",
Pipe => "|",
LessLess => "<<",
GreaterGreater => ">>",
Question => "?",
PlusEqual => "+=",
MinusEqual => "-=",
StarEqual => "*=",
SlashEqual => "/=",
PercentEqual => "%=",
AmpersandEqual => "&=",
PipeEqual => "|=",
CaretEqual => "^=",
LessLessEqual => "<<=",
GreaterGreaterEqual => ">>="
});
/// Helper type for parsing tokens that have a defined lexeme, such as `fn`,
/// `f32`, `const`, etc. Tokens with variable lexemes, such as primitive
/// integral types, constants or identifiers are not parsed by this.
pub struct LexemeParser {
lexemes: Vec<Token>,
candidates: Vec<Token>,
len: usize,
}
impl LexemeParser {
pub fn new() -> Self {
let lexemes = Token::lexemes()
.iter()
.map(|(tok, _)| tok.clone())
.collect::<Vec<_>>();
Self {
lexemes,
candidates: vec![],
len: 0,
}
}
pub fn finish(mut self) -> Option<Token> {
self.candidates.pop()
}
pub fn parse(mut tokens: impl Iterator<Item = char>) -> Option<Token> {
let mut this = Self::new();
loop {
let Some(ch) = tokens.next() else {
break;
};
if crate::common::is_whitespace(ch) {
break;
}
this.advance(ch)?;
}
this.finish()
}
/// accepts a char and returns `None` until it is done trying to parse the longest `Token`.
/// when finished, returns a Token, if it parsed one, or `Some(None)`.
pub fn advance(&mut self, ch: char) -> Option<Option<Token>> {
self.len += 1;
// advance match
// keep tokens whose lexemes match the next char
self.lexemes.retain(|tok| {
// SAFETY: all of these tokens are lexical, and every character in
// them is represented by a single byte and we know they must be
// utf8/ascii.
unsafe {
char::from_u32_unchecked(tok.lexeme().unwrap().as_bytes()[self.len - 1] as u32)
== ch
}
});
// A token has been successfully matched completely if it has not yet
// been removed from the lexeme list but the length of it's lexeme is no
// greater than the number of chars we've received.
self.candidates.extend(self.lexemes.extract_if(|tok| {
// SAFETY: as above, all of the tokens in self.lexemes are
// lexical and are all single byte characters.
tok.lexeme().unwrap().as_bytes().len() <= self.len
}));
// we prefer the longer match
// that means that a+++++b doesn't parse and a+++(++b) is a++ + ++b
// `&&i` is also LogicalAnd i and not Ampersand Ampersand i
// Somehow, this is also a gnu extension...
if self.lexemes.is_empty() {
// return match, if it exists
return Some(self.candidates.pop());
}
return None;
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct TokenPos {
pub token: Token,
pub start: u32,
pub end: u32,
}
impl TokenPos {
pub fn new(token: Token, start: u32, end: u32) -> Self {
Self { token, start, end }
}
}