working on parsing ast

This commit is contained in:
Janis 2024-08-07 00:35:10 +02:00
parent e8934b8ccc
commit b7105c1235
5 changed files with 879 additions and 28 deletions

View file

@ -10,11 +10,12 @@
<ident> ::= <id-start>
| <ident> <id-cont>
<program> ::= <definition>
<program> ::= <declaration>*
<definition> ::= <var-decl> | <fn-decl>
<declaration> ::= <fn-decl> | <global-decl>
<fn-decl> ::= fn <ident> '(' <parameter-list> ,? ')' (-> <type-name>)? <block>
<fn-proto> ::= fn <ident> '(' <parameter-list> ,? ')' (-> <type-name>)?
<fn-decl> ::= <fn-proto> <block>
<parameter-list> ::= <parameter>
| <parameter-list> , <parameter>
@ -29,7 +30,7 @@
| <var-decl> ';'
<return-statement> ::= return <expr>? ';'
<expr-statement> ::= <expr> ';'
<assignment-statement> ::= <ident> <assignment-op> <expr> ';'
<assignment-statement> ::= <expr> <assignment-op> <expr> ';'
<assignment-op> ::= |= | &= | ^= | /= | *= | %= | <<= | >>= | += | -= | =
<expr> ::= <or-expr>
@ -58,7 +59,15 @@
<prefix-expr> ::= <prefix-op> <as-expr>
<prefix-op> ::= ! - + & *
<as-expr> ::= <primary-expr> as <type-name>
<as-expr> ::= <postfix-expr> as <type-name>
<postfix-expr> ::= <primary-expr>
| <postfix-expr> '(' (<argument-list>,?)? ')'
<argument-list> ::= <argument>
| <parameter-list> , <argument>
<argument> ::= <expr>
| <ident>: <expr>
<primary-expr> ::= <constant>
| <literal>
@ -66,6 +75,7 @@
| '(' <expr> ')'
<var-decl> ::= (let | var) <ident> (':' <type-name>)? ( = <expr> )?
<global-decl> ::= <var-decl> ';'
<type-name> ::= <ident>
| <primitive-type>
@ -78,7 +88,6 @@
<integral-type> ::= ('u' | 'i') <digits>+
<floating-type> ::= 'f'('32' | '64')
<constant> ::= <integral-constant>
| <floating-constant>

217
src/ast.rs Normal file
View file

@ -0,0 +1,217 @@
use std::num::NonZero;
pub type Node = NonZero<u32>;
pub enum Tag {
Root,
FunctionProto {
/// Ident
name: Node,
/// ParameterList
parameters: Option<Node>,
return_type: Node,
},
ParameterList {
/// [Parameter]
parameters: Vec<Node>,
},
Parameter {
/// Ident
name: Node,
/// TypeName
ty: Node,
},
TypeName {
/// Ident | PrimitiveType | Pointer
inner: Node,
},
Pointer {
/// TypeName
pointee: Node,
},
PointerQualifier {
constness: bool,
},
IntegralType(IntegralType),
PrimitiveType(PrimitiveType),
Decl {
/// FunctionDecl | VarDecl
inner: Node,
},
FunctionDecl {
/// FunctionProto
proto: Node,
/// Block
body: Node,
},
Ident {
name: String,
},
IntegralConstant {
bits: u64,
ty: IntegralType,
},
FloatingConstant {
bits: u64,
ty: FloatingType,
},
Block {
/// ReturnStmt | ExprStmt | VarDecl
statements: Node,
trailing_expr: Option<Node>,
},
ReturnStmt {
expr: Option<Node>,
},
ExprStmt {
expr: Node,
},
VarDecl {
let_or_var: LetOrVar,
/// Ident
name: Node,
/// TypeName
explicit_type: Option<Node>,
expr: Option<Node>,
},
CallExpr {
/// Ident | Expr
lhs: Node,
/// ArgumentList
rhs: Option<Node>,
},
ArgumentList {
/// [Argument]
parameters: Vec<Node>,
},
Argument {
/// Ident
name: Option<Node>,
/// expr
expr: Node,
},
ExplicitCast {
lhs: Node,
/// TypeName
typename: Node,
},
Deref {
lhs: Node,
},
Ref {
lhs: Node,
},
Not {
lhs: Node,
},
Negate {
lhs: Node,
},
Or {
lhs: Node,
rhs: Node,
},
And {
lhs: Node,
rhs: Node,
},
BitOr {
lhs: Node,
rhs: Node,
},
BitAnd {
lhs: Node,
rhs: Node,
},
BitXOr {
lhs: Node,
rhs: Node,
},
Eq {
lhs: Node,
rhs: Node,
},
NEq {
lhs: Node,
rhs: Node,
},
Lt {
lhs: Node,
rhs: Node,
},
Gt {
lhs: Node,
rhs: Node,
},
Le {
lhs: Node,
rhs: Node,
},
Ge {
lhs: Node,
rhs: Node,
},
Shl {
lhs: Node,
rhs: Node,
},
Shr {
lhs: Node,
rhs: Node,
},
Add {
lhs: Node,
rhs: Node,
},
Sub {
lhs: Node,
rhs: Node,
},
Mul {
lhs: Node,
rhs: Node,
},
Rem {
lhs: Node,
rhs: Node,
},
Div {
lhs: Node,
rhs: Node,
},
Assign {
lhs: Node,
rhs: Node,
},
}
pub enum LetOrVar {
Let,
Var,
}
pub struct IntegralType {
pub signed: bool,
pub bits: u16,
}
pub enum FloatingType {
Binary32,
Binary64,
}
impl IntegralType {
pub fn u32() -> IntegralType {
Self {
signed: false,
bits: 32,
}
}
}
pub enum PrimitiveType {
FloatingType(FloatingType),
IntegralType(Node),
Bool,
Void,
}

View file

@ -6,7 +6,7 @@ use crate::common::FallibleParse;
use crate::common::NextIf;
#[derive(Debug, thiserror::Error)]
pub enum LexerError {
pub enum Error {
#[error("{0}")]
StringError(String),
#[error("Exp part of floating constant had no digits.")]
@ -25,7 +25,7 @@ pub enum LexerError {
ExpectedIdStartForIdentifier,
}
pub type LexerResult<T> = core::result::Result<T, LexerError>;
pub type Result<T> = core::result::Result<T, Error>;
#[derive(Debug, Clone)]
pub struct Chars<'a> {
@ -52,6 +52,38 @@ impl<'a> Chars<'a> {
self.offset
}
pub fn get_source_span(
&self,
start: u32,
end: u32,
) -> std::ops::RangeInclusive<SourceLocation> {
let (start_l, start_c) = {
let range = self.get_range(0, start);
range.chars().fold((1u32, 0u32), |(line, col), c| {
if c == '\n' {
(line + 1, 0)
} else {
(line, col + 1)
}
})
};
let (end_l, end_c) = {
let range = self.get_range(start, end);
range.chars().fold((start_l, start_c), |(line, col), c| {
if c == '\n' {
(line + 1, 0)
} else {
(line, col + 1)
}
})
};
core::ops::RangeInclusive::new(
SourceLocation::new(start_l, start_c),
SourceLocation::new(end_l, end_c),
)
}
pub fn get_range(&self, start: u32, end: u32) -> &str {
unsafe { core::str::from_utf8_unchecked(&self.bytes[start as usize..end as usize]) }
}
@ -77,6 +109,101 @@ pub struct Tokenizer<'a> {
tokens: Vec<TokenPos>,
}
#[derive(Debug, Clone)]
pub struct TokenIterator<'a> {
tokenizer: &'a Tokenizer<'a>,
offset: usize,
}
impl<'a> TokenIterator<'a> {
pub fn expect_token(&mut self, token: Token) -> crate::parser::Result<TokenItem<'a>> {
self.next_if(|item| item.token() == token)
.ok_or(crate::parser::Error::ExpectedTokenNotFound(token))
}
pub fn eat_token(&mut self, token: Token) -> Option<TokenItem<'a>> {
self.next_if(|item| item.token() == token)
}
pub fn peek_token(&mut self) -> Option<TokenItem<'a>> {
self.clone().next()
}
pub fn peek_token_or_err(&mut self) -> crate::parser::Result<TokenItem<'a>> {
self.clone()
.next()
.ok_or(crate::parser::Error::UnexpectedEndOfTokens)
}
pub fn peek_expect_token(&mut self, token: Token) -> crate::parser::Result<TokenItem<'a>> {
self.clone()
.next()
.ok_or(crate::parser::Error::ExpectedTokenNotFound(token))
}
pub fn is_next_token(&mut self, token: Token) -> bool {
self.clone().next_if(|item| item.token() == token).is_some()
}
}
pub struct TokenItem<'a> {
tokenizer: &'a Tokenizer<'a>,
inner: TokenPos,
}
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Clone, Copy, Hash)]
pub struct SourceLocation {
pub line: u32,
pub column: u32,
}
impl SourceLocation {
pub fn new(line: u32, column: u32) -> Self {
Self { line, column }
}
}
impl<'a> TokenItem<'a> {
pub fn token(&self) -> Token {
self.inner.token
}
pub fn lexeme(&self) -> &str {
self.tokenizer
.source
.get_range(self.inner.start, self.inner.end)
}
pub fn source_location(&self) -> std::ops::RangeInclusive<SourceLocation> {
self.tokenizer
.source
.get_source_span(self.inner.start, self.inner.end)
}
}
impl<'a> Iterator for TokenIterator<'a> {
type Item = TokenItem<'a>;
fn next(&mut self) -> Option<Self::Item> {
if self.tokenizer.tokens.len() >= self.offset {
None
} else {
let index = self.offset;
self.offset += 1;
match self.tokenizer.tokens[index].token {
Token::SlashSlash
| Token::SlashSlashSlash
| Token::SlashStar
| Token::SlashStarStar
| Token::Comment
| Token::DocComment => self.next(),
_ => Some(Self::Item {
tokenizer: self.tokenizer,
inner: self.tokenizer.tokens[index],
}),
}
}
}
}
macro_rules! next_or_eof {
($expr:expr) => {
match $expr.next() {
@ -141,13 +268,20 @@ macro_rules! residual {
}
impl<'a> Tokenizer<'a> {
fn push_token(&mut self, token: Token, start: u32, end: u32) -> LexerResult<()> {
pub fn iter(&self) -> TokenIterator {
TokenIterator {
tokenizer: self,
offset: 0,
}
}
fn push_token(&mut self, token: Token, start: u32, end: u32) -> Result<()> {
self.tokens.push(TokenPos::new(token, start, end));
Ok(())
}
pub fn next_token(&mut self) -> LexerResult<()> {
pub fn next_token(&mut self) -> Result<()> {
self.source
.take_while_ref(|&c| crate::common::is_whitespace(c))
.count();
@ -256,7 +390,7 @@ impl<'a> Tokenizer<'a> {
self.source
.next_if(|&c| crate::common::is_id_start(c))
.ok_or(LexerError::ExpectedIdStartForIdentifier)?;
.ok_or(Error::ExpectedIdStartForIdentifier)?;
self.source
.take_while_ref(|&c| crate::common::is_id_continue(c))
.count();
@ -267,7 +401,7 @@ impl<'a> Tokenizer<'a> {
/// IntegralType <-
/// ( 'u' | 'i' ) DIGITS+
fn try_parse_integral_type(source: &mut Chars) -> LexerResult<Option<()>> {
fn try_parse_integral_type(source: &mut Chars) -> Result<Option<()>> {
if !source.next_if(|&c| c == 'u' || c == 'i').is_some() {
return Ok(None);
}
@ -277,14 +411,14 @@ fn try_parse_integral_type(source: &mut Chars) -> LexerResult<Option<()>> {
.count()
<= 0
{
return Err(LexerError::IntegralTypeExpectedDigit);
return Err(Error::IntegralTypeExpectedDigit);
};
Ok(Some(()))
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
enum Radix {
pub enum Radix {
Hex,
Bin,
Dec,
@ -296,21 +430,29 @@ impl Radix {
unsafe fn from_char_unchecked(c: char) -> Self {
match c.to_ascii_lowercase() {
'o' => Self::Oct,
'b' => Self::Oct,
'x' => Self::Oct,
'd' => Self::Oct,
'b' => Self::Bin,
'x' => Self::Hex,
'd' => Self::Dec,
_ => unreachable!(),
}
}
fn from_char(c: char) -> Option<Self> {
match c.to_ascii_lowercase() {
'o' => Some(Self::Oct),
'b' => Some(Self::Oct),
'x' => Some(Self::Oct),
'd' => Some(Self::Oct),
'b' => Some(Self::Bin),
'x' => Some(Self::Hex),
'd' => Some(Self::Dec),
_ => None,
}
}
fn radix(self) -> u8 {
match self {
Radix::Hex => 16,
Radix::Bin => 2,
Radix::Oct => 8,
Radix::Dec => 10,
}
}
fn to_token(self) -> Token {
match self {
Radix::Hex => Token::IntegerHexConstant,
@ -319,7 +461,62 @@ impl Radix {
Radix::Dec => Token::IntegerConstant,
}
}
fn is_digit(self) -> fn(char) -> bool {
pub fn from_token(token: Token) -> Option<Self> {
match token {
Token::IntegerHexConstant => Some(Radix::Hex),
Token::IntegerBinConstant => Some(Radix::Bin),
Token::IntegerOctConstant => Some(Radix::Oct),
Token::IntegerConstant => Some(Radix::Dec),
_ => None,
}
}
pub fn folding_method(self) -> fn(u64, char) -> u64 {
match self {
Radix::Hex => {
fn fold(acc: u64, c: char) -> u64 {
let digit = match c {
'0'..='9' => c as u8 - b'0',
'a'..='f' => c as u8 - b'a',
'A'..='F' => c as u8 - b'A',
_ => unreachable!(),
};
acc + digit as u64 * 16
}
fold
}
Radix::Bin => {
fn fold(acc: u64, c: char) -> u64 {
let digit = match c {
'0'..='1' => c as u8 - b'0',
_ => unreachable!(),
};
acc + digit as u64 * 2
}
fold
}
Radix::Dec => {
fn fold(acc: u64, c: char) -> u64 {
let digit = match c {
'0'..='9' => c as u8 - b'0',
_ => unreachable!(),
};
acc + digit as u64 * 10
}
fold
}
Radix::Oct => {
fn fold(acc: u64, c: char) -> u64 {
let digit = match c {
'0'..='7' => c as u8 - b'0',
_ => unreachable!(),
};
acc + digit as u64 * 8
}
fold
}
}
}
pub fn is_digit(self) -> fn(char) -> bool {
match self {
Radix::Hex => crate::common::is_hex_digit,
Radix::Bin => crate::common::is_bin_digit,
@ -337,7 +534,7 @@ fn parse_digit_part(
source: &mut Chars,
allow_leading_underscore: bool,
radix: Radix,
) -> LexerResult<()> {
) -> Result<()> {
let radix = radix.is_digit();
if allow_leading_underscore {
@ -345,9 +542,9 @@ fn parse_digit_part(
}
let _need_digit = source.next_if(|&c| radix(c)).ok_or_else(|| {
if source.peek() == Some('_') {
LexerError::NumericalConstantDigitLeadingUnderscore
Error::NumericalConstantDigitLeadingUnderscore
} else {
LexerError::NumericalConstantDigitNoDigit
Error::NumericalConstantDigitNoDigit
}
})?;
let _rest = source.take_while_ref(|&c| radix(c) || c == '_').count();
@ -361,7 +558,7 @@ fn parse_digit_part(
///
/// EXP_PART <-
/// (`e`|`E`) (`-`|`+`)? DEC_DIGITS
fn try_parse_exp_part(source: &mut Chars) -> LexerResult<Option<()>> {
fn try_parse_exp_part(source: &mut Chars) -> Result<Option<()>> {
if source.next_if(|&c| c.to_ascii_lowercase() == 'e').is_some() {
let _sign = source.next_if(|&c| c == '-' || c == '+');
if source
@ -370,7 +567,7 @@ fn try_parse_exp_part(source: &mut Chars) -> LexerResult<Option<()>> {
.lt(&1)
{
// need digits following exp notation
Err(LexerError::FloatingConstantExpPartNoDigit)
Err(Error::FloatingConstantExpPartNoDigit)
} else {
Ok(Some(()))
}
@ -387,7 +584,7 @@ fn try_parse_exp_part(source: &mut Chars) -> LexerResult<Option<()>> {
/// DEC_DIGITS FloatingType?
/// `.` DEC_DIGITS EXP_PART? FloatingType?
/// DEC_DIGITS `.` DEC_DIGITS? EXP_PART? FloatingType?
fn parse_constant(source: &mut Chars) -> LexerResult<Token> {
fn parse_constant(source: &mut Chars) -> Result<Token> {
let zero = source.next_if(|&c| c == '0').is_some();
let radix = zero
.then(|| source.next_if_map(|c| Radix::from_char(c)))
@ -423,7 +620,7 @@ fn parse_constant(source: &mut Chars) -> LexerResult<Token> {
let digits = source.next_tuple::<(char, char)>();
if !(digits == Some(('6', '4')) || digits == Some(('3', '2'))) {
// need either f64 or f32 here!
return Err(LexerError::FloatingConstantInvalidTrailingType);
return Err(Error::FloatingConstantInvalidTrailingType);
}
true
} else {

View file

@ -1,5 +1,8 @@
#![feature(extract_if, iter_advance_by)]
#![allow(dead_code, unused_macros)]
mod ast;
mod common;
mod lexer;
mod parser;
mod tokens;

425
src/parser.rs Normal file
View file

@ -0,0 +1,425 @@
use std::collections::HashMap;
use itertools::Itertools;
use crate::{
ast::{FloatingType, IntegralType, LetOrVar, Node, PrimitiveType, Tag},
lexer::{Radix, TokenIterator},
tokens::Token,
};
#[derive(Debug, thiserror::Error)]
pub enum Error {
#[error("Unexpected end of token iter.")]
UnexpectedEndOfTokens,
#[error("Expected primitive type.")]
ExpectedPrimitiveType,
#[error("Expected token {0}.")]
ExpectedTokenNotFound(Token),
#[error("Dummy message.")]
ExpectedLetOrVar,
}
pub type Result<T> = core::result::Result<T, Error>;
pub struct Tree {
nodes: Vec<Tag>,
}
impl Tree {
pub fn new() -> Tree {
Self {
nodes: vec![Tag::Root],
}
}
fn push_tag(&mut self, tag: Tag) -> Node {
let node = Node::new(self.nodes.len() as u32).unwrap();
self.nodes.push(tag);
node
}
/// returns (signed, bits)
fn parse_integral_type(lexeme: &str) -> IntegralType {
let mut iter = lexeme.chars();
let signed = match iter.next().unwrap() {
'u' => false,
'i' | 's' => true,
_ => unreachable!(),
};
let bits = iter.fold(0u16, |acc, c| {
let digit = c as u8 - b'0';
acc + digit as u16 * 10
});
IntegralType { signed, bits }
}
fn parse_integral_constant(token: Token, lexeme: &str) -> (u64, IntegralType) {
let radix = Radix::from_token(token).unwrap();
// TODO: figure out how to do this safely for bigger types, whether to
// wrap, saturate, or else.
let iter = &mut lexeme.char_indices();
let value = iter
.take_while_ref(|&(_, c)| radix.is_digit()(c) || c == '_')
.filter(|&(_, c)| c != '_')
.fold(0u64, |acc, (_, c)| radix.folding_method()(acc, c));
let ty = match iter.clone().next() {
Some((_, 'u')) | Some((_, 'i')) => {
Self::parse_integral_type(&lexeme[iter.next().unwrap().0..])
}
_ => IntegralType::u32(),
};
(value, ty)
}
fn parse_floating_constant(_token: Token, lexeme: &str) -> (u64, FloatingType) {
// let (dot, exp) = match token {
// Token::DotFloatingExpConstant => (true, true),
// Token::DotFloatingConstant => (true, false),
// Token::FloatingExpConstant => (false, true),
// Token::FloatingConstant => (false, false),
// _ => unreachable!(),
// };
let lexeme = lexeme
.strip_suffix("f32")
.map(|l| (l, FloatingType::Binary32))
.unwrap_or(
lexeme
.strip_suffix("f64")
.map(|l| (l, FloatingType::Binary64))
.unwrap_or((lexeme, FloatingType::Binary64)),
);
let bits = match lexeme.1 {
FloatingType::Binary32 => lexeme.0.parse::<f32>().unwrap().to_bits() as u64,
FloatingType::Binary64 => lexeme.0.parse::<f64>().unwrap().to_bits() as u64,
};
(bits, lexeme.1)
}
fn parse_ident(&mut self, tokens: &mut TokenIterator) -> Result<Node> {
let name = tokens.expect_token(Token::Ident)?.lexeme().to_owned();
Ok(self.push_tag(Tag::Ident { name }))
}
pub fn parse_primitive_type(&mut self, tokens: &mut TokenIterator) -> Result<Node> {
let token = tokens.next().ok_or(Error::UnexpectedEndOfTokens)?;
let prim = match token.token() {
Token::IntegralType => {
let int = Self::parse_integral_type(token.lexeme());
PrimitiveType::IntegralType(self.push_tag(Tag::IntegralType(int)))
}
Token::Void => PrimitiveType::Void,
Token::Bool => PrimitiveType::Bool,
Token::F32 => PrimitiveType::FloatingType(FloatingType::Binary32),
Token::F64 => PrimitiveType::FloatingType(FloatingType::Binary64),
_ => {
return Err(Error::ExpectedPrimitiveType);
}
};
Ok(self.push_tag(Tag::PrimitiveType(prim)))
}
pub fn parse_pointer(&mut self, tokens: &mut TokenIterator) -> Result<Node> {
tokens.expect_token(Token::Star)?;
let _constness = tokens.eat_token(Token::Const);
let typename = self.parse_typename(tokens)?;
Ok(self.push_tag(Tag::Pointer { pointee: typename }))
}
pub fn parse_typename(&mut self, tokens: &mut TokenIterator) -> Result<Node> {
match tokens.peek_token_or_err()?.token() {
Token::Star => self.parse_pointer(tokens),
Token::Ident => Ok(self.push_tag(Tag::Ident {
name: tokens.next().unwrap().lexeme().to_owned(),
})),
_ => self.parse_primitive_type(tokens),
}
}
pub fn parse_var_decl(&mut self, tokens: &mut TokenIterator) -> Result<Node> {
let let_or_var = match tokens
.eat_token(Token::Let)
.or_else(|| tokens.eat_token(Token::Var))
.map(|itm| itm.token())
.ok_or(Error::ExpectedLetOrVar)?
{
Token::Let => LetOrVar::Let,
Token::Var => LetOrVar::Var,
_ => unreachable!(),
};
let name = self.parse_ident(tokens)?;
let explicit_type = if tokens.eat_token(Token::Colon).is_some() {
Some(self.parse_typename(tokens)?)
} else {
None
};
let expr = if tokens.eat_token(Token::Equal).is_some() {
Some(self.parse_expr(tokens)?)
} else {
None
};
Ok(self.push_tag(Tag::VarDecl {
let_or_var,
name,
explicit_type,
expr,
}))
}
pub fn parse_global_decl(&mut self, tokens: &mut TokenIterator) -> Result<Node> {
let node = self.parse_var_decl(tokens)?;
tokens.expect_token(Token::Semi)?;
Ok(node)
}
pub fn parse_parameter(&mut self, tokens: &mut TokenIterator) -> Result<Node> {
let name = self.parse_ident(tokens)?;
tokens.expect_token(Token::Colon)?;
let ty = self.parse_typename(tokens)?;
Ok(self.push_tag(Tag::Parameter { name, ty }))
}
pub fn parse_parameter_list(&mut self, tokens: &mut TokenIterator) -> Result<Node> {
let mut parameters = Vec::new();
loop {
parameters.push(self.parse_parameter(tokens)?);
if !tokens.eat_token(Token::Comma).is_some() {
break;
}
if !tokens.is_next_token(Token::Ident) {
break;
}
}
todo!()
}
pub fn parse_fn_proto(&mut self, tokens: &mut TokenIterator) -> Result<Node> {
tokens.expect_token(Token::Fn)?;
let name = self.parse_ident(tokens)?;
tokens.expect_token(Token::OpenParens)?;
let parameters = if !tokens.is_next_token(Token::CloseParens) {
Some(self.parse_parameter_list(tokens)?)
} else {
None
};
tokens.expect_token(Token::CloseParens)?;
let return_type = if tokens.eat_token(Token::MinusGreater).is_some() {
self.parse_typename(tokens)?
} else {
self.push_tag(Tag::PrimitiveType(PrimitiveType::Void))
};
Ok(self.push_tag(Tag::FunctionProto {
name,
parameters,
return_type,
}))
}
pub fn parse_fn_decl(&mut self, tokens: &mut TokenIterator) -> Result<Node> {
let proto = self.parse_fn_proto(tokens)?;
let body = self.parse_block(tokens)?;
Ok(self.push_tag(Tag::FunctionDecl { proto, body }))
}
pub fn parse_block(&mut self, tokens: &mut TokenIterator) -> Result<Node> {
todo!()
}
pub fn parse_assignment(&mut self, tokens: &mut TokenIterator) -> Result<Node> {
todo!()
}
pub fn parse_return_stmt(&mut self, tokens: &mut TokenIterator) -> Result<Node> {
todo!()
}
pub fn parse_statement(&mut self, tokens: &mut TokenIterator) -> Result<Node> {
todo!()
}
pub fn parse_binary_expr(
&mut self,
tokens: &mut TokenIterator,
precedence: u32,
) -> Result<Node> {
let mut node = self.parse_prefix_expr(tokens)?;
loop {
let Some(tok) = tokens.peek_token() else {
break;
};
let Some(prec) = PRECEDENCE_MAP.get(&tok.token()).cloned() else {
break;
};
if prec < precedence {
break;
}
let tok = tokens.next().unwrap();
let lhs = node;
let rhs = self.parse_binary_expr(tokens, prec + 1)?;
let tag = match tok.token() {
Token::PipePipe => Tag::Or { lhs, rhs },
Token::AmpersandAmpersand => Tag::And { lhs, rhs },
Token::Pipe => Tag::BitOr { lhs, rhs },
Token::Caret => Tag::BitXOr { lhs, rhs },
Token::Ampersand => Tag::BitAnd { lhs, rhs },
Token::BangEqual => Tag::NEq { lhs, rhs },
Token::EqualEqual => Tag::Eq { lhs, rhs },
Token::LessEqual => Tag::Le { lhs, rhs },
Token::GreaterEqual => Tag::Ge { lhs, rhs },
Token::Less => Tag::Lt { lhs, rhs },
Token::Greater => Tag::Gt { lhs, rhs },
Token::GreaterGreater => Tag::Shr { lhs, rhs },
Token::LessLess => Tag::Shl { lhs, rhs },
Token::Plus => Tag::Add { lhs, rhs },
Token::Minus => Tag::Sub { lhs, rhs },
Token::Percent => Tag::Rem { lhs, rhs },
Token::Star => Tag::Mul { lhs, rhs },
Token::Slash => Tag::Div { lhs, rhs },
_ => unreachable!(),
};
node = self.push_tag(tag);
}
Ok(node)
}
pub fn parse_prefix_expr(&mut self, tokens: &mut TokenIterator) -> Result<Node> {
match tokens.peek_token_or_err()?.token() {
Token::Bang => {
_ = tokens.next();
let lhs = self.parse_as_expr(tokens)?;
Ok(self.push_tag(Tag::Not { lhs }))
}
Token::Minus => {
_ = tokens.next();
let lhs = self.parse_as_expr(tokens)?;
Ok(self.push_tag(Tag::Negate { lhs }))
}
Token::Plus => {
_ = tokens.next();
self.parse_as_expr(tokens)
}
Token::Ampersand => {
_ = tokens.next();
let lhs = self.parse_as_expr(tokens)?;
Ok(self.push_tag(Tag::Ref { lhs }))
}
Token::Star => {
_ = tokens.next();
let lhs = self.parse_as_expr(tokens)?;
Ok(self.push_tag(Tag::Deref { lhs }))
}
_ => self.parse_as_expr(tokens),
}
}
pub fn parse_as_expr(&mut self, tokens: &mut TokenIterator) -> Result<Node> {
let expr = self.parse_primary_expr(tokens)?;
if tokens.eat_token(Token::As).is_some() {
let typename = self.parse_typename(tokens)?;
Ok(self.push_tag(Tag::ExplicitCast {
lhs: expr,
typename,
}))
} else {
Ok(expr)
}
}
pub fn parse_postfix_expr(&mut self, tokens: &mut TokenIterator) -> Result<Node> {
// TODO
self.parse_primary_expr(tokens)
}
pub fn parse_primary_expr(&mut self, tokens: &mut TokenIterator) -> Result<Node> {
let token = tokens.peek_token_or_err()?;
match token.token() {
Token::Ident => Ok(self.parse_ident(tokens)?),
Token::IntegerBinConstant
| Token::IntegerHexConstant
| Token::IntegerOctConstant
| Token::IntegerConstant => {
let (bits, ty) = Self::parse_integral_constant(token.token(), token.lexeme());
Ok(self.push_tag(Tag::IntegralConstant { bits, ty }))
}
Token::FloatingConstant
| Token::FloatingExpConstant
| Token::DotFloatingConstant
| Token::DotFloatingExpConstant => {
let (bits, ty) = Self::parse_floating_constant(token.token(), token.lexeme());
Ok(self.push_tag(Tag::FloatingConstant { bits, ty }))
}
Token::OpenParens => {
_ = tokens.next();
let node = self.parse_expr(tokens)?;
tokens.expect_token(Token::CloseParens)?;
Ok(node)
}
_ => unreachable!(),
}
}
pub fn parse_expr(&mut self, tokens: &mut TokenIterator) -> Result<Node> {
todo!()
}
pub fn parse_program(&mut self, tokens: &mut TokenIterator) -> Result<Vec<Node>> {
todo!()
}
pub fn parse(&mut self, tokens: TokenIterator) {}
}
static PRECEDENCE_MAP: std::sync::LazyLock<HashMap<Token, u32>> = std::sync::LazyLock::new(|| {
HashMap::from([
(Token::PipePipe, 10),
(Token::AmpersandAmpersand, 20),
(Token::Pipe, 30),
(Token::Caret, 40),
(Token::Ampersand, 50),
(Token::BangEqual, 60),
(Token::EqualEqual, 60),
(Token::LessEqual, 70),
(Token::GreaterEqual, 70),
(Token::Less, 70),
(Token::Greater, 70),
(Token::GreaterGreater, 80),
(Token::LessLess, 80),
(Token::Plus, 90),
(Token::Minus, 90),
(Token::Percent, 100),
(Token::Star, 100),
(Token::Slash, 100),
])
});